Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fung-Lung Chung is active.

Publication


Featured researches published by Fung-Lung Chung.


The Lancet | 2000

Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China

Stephanie J. London; Jian-Min Yuan; Fung-Lung Chung; Yu-Tang Gao; Gerhard A. Coetzee; Ronald K. Ross; Mimi C. Yu

BACKGROUND Dietary isothiocyanates inhibit lung carcinogenesis in laboratory animals but human data are limited. Glutathione S-transferases M1 and T1 (GSTM1 and GSTT1) conjugate isothiocyanates leading to more rapid elimination. Common deletion polymorphisms of GSTM1 and GSTT1 abolish enzyme activity. We hypothesised that chemopreventive effects of isothiocyanates might be heightened when enzymes that enhance their elimination are lacking. METHODS We examined the relation between total isothiocyanate concentrations in urine, collected before diagnosis, and the subsequent risk of lung cancer among 232 incident cases of lung cancer and 710 matched controls from a cohort of 18,244 men in Shanghai, China, followed from 1986 to 1997. Homozygous deletion of the GSTM1 and GSTT1 genes were determined by PCR. FINDINGS Individuals with detectable isothiocyanates in the urine were at decreased risk of lung cancer (smoking-adjusted relative risk for lung cancer=0.65 [95% CI 0.43-0.97]). This protective effect of isothiocyanates was seen primarily among individuals with homozygous deletion of GSTM1 (0.36 [0.20-0.63]) and particularly with deletion of both GSTM1 and GSTT1 (0.28 [0.13-0.57]). INTERPRETATION Isothiocyanates appeared to reduce lung-cancer risk in this cohort of Chinese men. Reduction in risk was strongest among persons genetically deficient in enzymes that rapidly eliminate these chemopreventive compounds.


Cancer Research | 2004

A Novel Mechanism of Chemoprotection by Sulforaphane Inhibition of Histone Deacetylase

Melinda C. Myzak; P. Andrew Karplus; Fung-Lung Chung; Roderick H. Dashwood

Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli sprouts, is a potent inducer of phase 2 detoxification enzymes and inhibits tumorigenesis in animal models. SFN also has a marked effect on cell cycle checkpoint controls and cell survival and/or apoptosis in various cancer cells, through mechanisms that are poorly understood. We tested the hypothesis that SFN acts as an inhibitor of histone deacetylase (HDAC). In human embryonic kidney 293 cells, SFN dose-dependently increased the activity of a β-catenin-responsive reporter (TOPflash), without altering β-catenin or HDAC protein levels. Cytoplasmic and nuclear extracts from these cells had diminished HDAC activity, and both global and localized histone acetylation was increased, compared with untreated controls. Studies with SFN and with media from SFN-treated cells indicated that the parent compound was not responsible for the inhibition of HDAC, and this was confirmed using an inhibitor of glutathione S-transferase, which blocked the first step in the metabolism of SFN, via the mercapturic acid pathway. Whereas SFN and its glutathione conjugate (SFN-GSH) had little or no effect, the two major metabolites SFN-cysteine and SFN-N-acetylcysteine were effective HDAC inhibitors in vitro. Finally, several of these findings were recapitulated in HCT116 human colorectal cancer cells: SFN dose-dependently increased TOPflash reporter activity and inhibited HDAC activity, there was an increase in acetylated histones and in p21Cip1/Waf1, and chromatin immunoprecipitation assays revealed an increase in acetylated histones bound to the P21 promoter. Collectively, these findings suggest that SFN may be effective as a tumor-suppressing agent and as a chemotherapeutic agent, alone or in combination with other HDAC inhibitors currently undergoing clinical trials.


Current Drug Metabolism | 2002

Isothiocyanates as Cancer Chemopreventive Agents: Their Biological Activities and Metabolism in Rodents and Humans

C. Clifford Conaway; Yang-Ming Yang; Fung-Lung Chung

Isothiocyanates (ITCs) are a group of naturally occurring compounds that occur as thioglucoside conjugates, termed glucosinolates, in plants and cruciferous vegetables such as watercress, Brussels sprouts, broccoli, cabbage, kai choi, kale, horseradish, radish and turnip. ITCs inhibit the development of tumors in many of the experimental models investigated, and are being investigated as possible chemopreventive agents for specific human cancers. The goal of this review is to provide a mechanistic understanding for the biological activities of ITCs and to relate the metabolism of ITCs to their action as chemopreventive agents. In vivo animal studies have been conducted to address issues of tissue disposition, pharmacokinetics, and metabolism of ITCs. Methods for analysis of ITCs and their metabolites in urine and plasma have been developed. The metabolism of several naturally occurring ITCs as constituents of foodstuffs or as drugs has also been investigated in human studies. Finally, based on recent epidemiological studies, the role of dietary consumption of vegetables containing ITCs in prevention of human cancers and human cancer susceptibility is discussed.


Nutrition and Cancer | 2000

Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli.

C. Clifford Conaway; Serkadis M. Getahun; Leonard L. Liebes; Donald J. Pusateri; Debra K. W. Topham; María Botero-Omary; Fung-Lung Chung

The cancer-chemopreventive effects of broccoli may be attributed, in part, to isothiocyanates (ITCs), hydrolysis products of glucosinolates. Glucosinolates are hydrolyzed to their respective ITCs by the enzyme myrosinase, which is inactivated by heat. In this study, the metabolic fate of glucosinolates after ingestion of steamed and fresh broccoli was compared in 12 male subjects in a crossover design. During each 48-hour baseline period, no foods containing glucosinolates or ITCs were allowed. The subjects then consumed 200 g of fresh or steamed broccoli; all other dietary sources of ITCs were excluded. Blood and urine samples were collected during the 24-hour period after broccoli consumption. Total ITC equivalents in broccoli and total ITC equivalents in plasma and urine were assayed by high-performance liquid chromatography as the cyclocondensation product of 1,2-benzenedithiol. The content of ITCs in fresh and steamed broccoli after myrosinase treatment was found to be virtually identical (1.1 vs. 1.0 μmol/g wet wt). The average 24-hour urinary excretion of ITC equivalents amounted to 32.3 ± 12.7% and 10.2 ± 5.9% of the amounts ingested for fresh and steamed broccoli, respectively. Approximately 40% of total ITC equivalents in urine, 25.8 ± 13.9 and 6.9 ± 2.5 μmol for fresh and steamed broccoli, respectively, occurred as the N-acetyl-L-cysteine conjugate of sulforaphane (SFN-NAC). Total ITC metabolites in plasma peaked between 0 and 8 hours, whereas urinary excretion of total ITC equivalents and SFN-NAC occurred primarily between 2 and 12 hours. Results of this study indicate that the bioavailability of ITCs from fresh broccoli is approximately three times greater than that from cooked broccoli, in which myrosinase is inactivated. Considering the cancer-chemopreventive potential of ITCs, cooking broccoli may markedly reduce its beneficial effects on health.


Journal of Biological Chemistry | 2008

Covalent Binding to Tubulin by Isothiocyanates A MECHANISM OF CELL GROWTH ARREST AND APOPTOSIS

Lixin Mi; Zhen Xiao; Brian L. Hood; Sivanesan Dakshanamurthy; Xiantao Wang; Sudha Govind; Thomas P. Conrads; Timothy D. Veenstra; Fung-Lung Chung

Isothiocyanates (ITCs) found in cruciferous vegetables, including benzyl-ITC (BITC), phenethyl-ITC (PEITC), and sulforaphane (SFN), inhibit carcinogenesis in animal models and induce apoptosis and cell cycle arrest in various cell types. The biochemical mechanisms of cell growth inhibition by ITCs are not fully understood. Our recent study showed that ITC binding to intracellular proteins may be an important initiating event for the induction of apoptosis. However, the specific protein target(s) and molecular mechanisms were not identified. In this study, two-dimensional gel electrophoresis of human lung cancer A549 cells treated with radiolabeled PEITC and SFN revealed that tubulin may be a major in vivo binding target for ITC. We examined whether binding to tubulin by ITCs could lead to cell growth arrest. The proliferation of A549 cells was significantly reduced by ITCs, with relative activities of BITC > PEITC > SFN. All three ITCs also induced mitotic arrest and apoptosis with the same order of activity. We found that ITCs disrupted microtubule polymerization in vitro and in vivo with the same order of potency. Mass spectrometry demonstrated that cysteines in tubulin were covalently modified by ITCs. Ellman assay results indicated that the modification levels follow the same order, BITC > PEITC > SFN. Together, these results support the notion that tubulin is a target of ITCs and that ITC-tubulin interaction can lead to downstream growth inhibition. This is the first study directly linking tubulin-ITC adduct formation to cell growth inhibition.


Food and Chemical Toxicology | 2002

Mechanisms of chronic disease causation by nutritional factors and tobacco products and their prevention by tea polyphenols

John H. Weisburger; Fung-Lung Chung

The beverage tea, from the top leaves of the plant Camellia sinensis is one of the most widely used beverages in the world, second only to water. Black and green tea have mostly similar actions. The active components are polyphenols, mainly epigallocatechin gallate in green tea, and the tea leaf polyphenol oxidase mediated oxidation to oolong and black tea, yielding other polyphenols, theaflavin and thearubigins. There is 40-50 mg caffeine in a 160-ml cup of tea. The chemopreventive effects of tea depend on: (1) its action as an antioxidant; (2) the specific induction of detoxifying enzymes; (3) its molecular regulatory functions on cellular growth, development and apoptosis; and (4) a selective improvement in the function of the intestinal bacterial flora. The oxidation of LDL cholesterol, associated with a risk for atherosclerosis and heart disease, is inhibited by tea. Many of cancers are caused by lifestyle elements. One is cigarette and tobacco use, leading to cancer in the oral cavity, esophagus and lung, inhibited by tea. Mice administered a tobacco nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), developed significantly fewer lung tumors than controls when given green tea or its major polyphenol, epigallocatechin gallate (EGCG). Tea suppressed the formation of 8-hydroxydeoxyguanosine (8-OHdG), a marker of oxidative DNA damage, in the lung DNA of mice given NNK. Gastric cancer, caused by a combination of Helicobacter pylori and salted foods, is lower in tea drinkers. Western nutritionally-linked cancers of the breast, colon, prostate and pancreas can be inhibited by tea. The formation of genotoxic carcinogens for these target organs during the cooking of meats, heterocyclic amines, and their effects were decreased by tea. Tea inhibited the formation of reactive oxygen species and radicals and induced cytochromes P450 1A1, 1A2 and 2B1, and glucuronosyl transferase. The higher formation of glucuronides represents an important mechanism in detoxification. The developmental aspects and growth of cancers through promotion are decreased by tea. The regular use of a widely available, tasty, inexpensive beverage, tea, has displayed valuable preventive properties in chronic human diseases.


Cancer Research | 2007

The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells.

Lixin Mi; Xiantao Wang; Sudha Govind; Brian L. Hood; Timothy D. Veenstra; Thomas P. Conrads; Daniel Saha; Radoslav Goldman; Fung-Lung Chung

Induction of apoptosis underlies a mechanism for inhibiting tumorigenesis by phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). However, the upstream events by which isothiocyanates (ITC) induce apoptosis have not been fully investigated. As electrophiles, ITCs could trigger apoptosis by binding to DNA or proteins or by inducing oxidative stress. To better understand the molecular mechanisms of apoptosis by ITCs, we examined, as a first step, the role of these events in human non-small lung cancer A549 cells. PEITC was a more potent inducer than SFN; it induced apoptosis at 20 micromol/L, whereas SFN induced at 40 micromol/L but not at 20 micromol/L. To study binding with cellular proteins and DNA, cells were treated with (14)C-ITCs; the initial protein binding by PEITC was almost 3-fold than that of SFN. The binding by PEITC increased with time, whereas binding by SFN remained low. Therefore, 4 h after incubation proteins became the predominant targets for PEITC with a 6-fold binding than that of SFN. To characterize the chemical nature of binding by the ITCs, we used bovine serum albumin (BSA) as a surrogate protein. PEITC also modified BSA covalently to a greater extent than SFN occurring exclusively at cysteine residues. Surprisingly, neither PEITC nor SFN bound to DNA or RNA at detectable levels or caused significant DNA strand breakage. The levels of oxidative damage in cells, measured as reactive oxygen species, 8-oxo-deoxyguanosine, and protein carbonyls formation, were greater in cells treated with SFN than PEITC. Because PEITC is a stronger inducer of apoptosis than SFN, these results indicate that direct covalent binding to cellular proteins is an important early event in the induction of apoptosis by the ITCs.


Mutation Research | 1999

Endogenous formation and significance of 1,N2-propanodeoxyguanosine adducts.

Fung-Lung Chung; Raghu G. Nath; Minako Nagao; Akiyoshi Nishikawa; Guo-Dong Zhou; Kurt Randerath

The detection of 1,N2-propanodeoxyguanosine adducts in the DNA of rodent and human tissues as endogenous lesions has raised important questions regarding the source of their formation and their roles in carcinogenesis. Both in vitro and in vivo studies have generated substantial evidence which supports the involvement of short- and long-chain enals derived from oxidized polyunsaturated fatty acids (PUFAs) in their formation. These studies show that: (1) the cyclic propano adducts are common products from reactions of enals with DNA bases; (2) they are formed specifically from linoleic acid (LA; omega-6) and docosahexaenoic acid (omega-3) under in vitro stimulated lipid peroxidation conditions; (3) the levels of propano adducts are dramatically increased in rat liver DNA upon depletion of glutathione; (4) the adduct levels are increased in the liver DNA of the CCl4-treated rats and the mutant strain of Long Evans rats which are genetically predisposed to increased lipid peroxidation; and (5) adduct levels are significantly higher in older rats than in newborn rats. These studies collectively demonstrate that tissue lipid peroxidation is a main endogenous pathway leading to propano adduction in DNA. The possible contribution from environmental sources, however, cannot be completely excluded. The mutagenicity of enals and the mutations observed in site-specific mutagenesis studies using a model 1,N2-propanodeoxyguanosine adduct suggest that these adducts are potential promutagenic lesions. The increased levels of the propano adducts in the tissue of carcinogen-treated animals also provide suggestive evidence for their roles in carcinogenesis. The involvement of these adducts in tumor promotion is speculated on the basis that oxidative condition in tissues is believed to be associated with this process.


Journal of Biological Chemistry | 2009

Cancer Preventive Isothiocyanates Induce Selective Degradation of Cellular α- and β-Tubulins by Proteasomes

Lixin Mi; Nanqin Gan; Amrita K. Cheema; Sivanesan Dakshanamurthy; Xiantao Wang; David C.H. Yang; Fung-Lung Chung

Although it is conceivable that cancer preventive isothiocyanates (ITCs), a family of compounds in cruciferous vegetables, induce cell cycle arrest and apoptosis through a mechanism involving oxidative stress, our study shows that binding to cellular proteins correlates with their potencies of apoptosis induction. More recently, we showed that ITCs bind selectively to tubulins. The differential binding affinities toward tubulin among benzyl isothiocyanate, phenethyl isothiocyanate, and sulforaphane correlate well with their potencies of inducing tubulin conformation changes, microtubule depolymerization, and eventual cell cycle arrest and apoptosis in human lung cancer A549 cells. These results support that tubulin binding by ITCs is an early event for cell growth inhibition. Here we demonstrate that ITCs can selectively induce degradation of both α- and β-tubulins in a variety of human cancer cell lines in a dose- and time-dependent manner. The onset of degradation, a rapid and irreversible process, is initiated by tubulin aggregation, and the degradation is proteasome-dependent. Results indicate that the degradation is triggered by ITC binding to tubulin and is irrelevant to oxidative stress. This is the first report that tubulin, a stable and abundant cytoskeleton protein required for cell cycle progression, can be selectively degraded by a small molecule.


Journal of Biological Chemistry | 2010

Sulforaphane Activates Heat Shock Response and Enhances Proteasome Activity through Up-regulation of Hsp27

Nanqin Gan; Yu-Chieh Wu; Mathilde Brunet; Carmen Garrido; Fung-Lung Chung; Chengkai Dai; Lixin Mi

It is conceivable that stimulating proteasome activity for rapid removal of misfolded and oxidized proteins is a promising strategy to prevent and alleviate aging-related diseases. Sulforaphane (SFN), an effective cancer preventive agent derived from cruciferous vegetables, has been shown to enhance proteasome activities in mammalian cells and to reduce the level of oxidized proteins and amyloid β-induced cytotoxicity. Here, we report that SFN activates heat shock transcription factor 1-mediated heat shock response. Specifically, SFN-induced expression of heat shock protein 27 (Hsp27) underlies SFN-stimulated proteasome activity. SFN-induced proteasome activity was significantly enhanced in Hsp27-overexpressing cells but absent in Hsp27-silenced cells. The role of Hsp27 in regulating proteasome activity was further confirmed in isogenic REG cells, in which SFN-induced proteasome activation was only observed in cells stably overexpressing Hsp27, but not in the Hsp27-free parental cells. Finally, we demonstrated that phosphorylation of Hsp27 is irrelevant to SFN-induced proteasome activation. This study provides a novel mechanism underlying SFN-induced proteasome activity. This is the first report to show that heat shock response by SFN, in addition to the antioxidant response mediated by the Keap1-Nrf2 pathway, may contribute to cytoprotection.

Collaboration


Dive into the Fung-Lung Chung's collaboration.

Top Co-Authors

Avatar

Lixin Mi

Georgetown University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shantu Amin

Penn State Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Fu

Georgetown University

View shared research outputs
Researchain Logo
Decentralizing Knowledge