Furu Zhan
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Furu Zhan.
Radiation Research | 2007
Gen Yang; Lijun Wu; Lianyun Chen; Bei Pei; Yugang Wang; Furu Zhan; Yuejin Wu; Zengliang Yu
Abstract Yang, G., Wu, L. J., Chen, L. Y., Pei, B., Wang, Y. G., Zhan F. R., Wu, Y. J. and Yu, Z. L. Targeted Irradiation of Shoot Apical Meristem of Arabidopsis Embryos Induces Long-Distance Bystander/Abscopal Effects. Radiat. Res. 167, 298– 305 (2007). Bystander effects induced by low-dose ionizing radiation have been shown to occur widely in many cell types and may have a significant impact on radiation risk assessment. Although the region of radiation damage is known to be much greater than the initial target volume irradiated, it remains to be seen whether this response is limited to the specific organ irradiated, spans a limited region of the body, or even covers the whole body of the target. To determine whether long-distance bystander/abscopal effects exist in whole organisms and to clarify the problem of intercellular communication, in the present study a specific cell group, the shoot apical meristem in Arabidopsis embryo, was irradiated with a defined number of protons and examined for root development postirradiation. The results showed that after direct damage to the shoot apical meristem from ion traversals, root hair differentiation, primary root elongation and lateral root initiation were all inhibited significantly in postembryonic development, suggesting that radiation-induced long-distance bystander/abscopal responses might exist in the whole organism. To further scrutinize the mechanism(s) underlying these inhibitory effects, a DR5-GUS transgenic Arabidopsis was used. The results showed that accumulation of the reporter GUS gene transcript in irradiated shoot apical meristem embryos decreased in the postembryonic development. Treatment with either 2,4-dichlorophenoxyacetic acid, a synthetic plant auxin, or DMSO, a effective reactive oxygen species (ROS) scavenger, could rescue the reporter GUS enzyme accumulation and the length of primary root in irradiated shoot apical meristem embryos, indicating that ROS or probably the ROS related auxin and auxin-dependent transcription process may be involved in radiation-induced long-distance bystander/abscopal effects.
Radiation Research | 2013
Xiaoying Guo; Jie Sun; Po Bian; Lianyun Chen; Furu Zhan; Jun Wang; An Xu; Yugang Wang; Tom K. Hei; Lijun Wu
Recently, radiation-induced bystander effects (RIBE) have been studied in mouse models in vivo, which clearly demonstrated bystander effects among somatic cells. However, there is currently no evidence for RIBE between somatic cells and germ cells in animal models in vivo. In the current study, the model animal Caenorhabditis elegans was used to investigate the bystander signaling from somatic cells to germ cells, as well as underlying mechanisms. C. elegans body size allows for precise microbeam irradiation and the abundant mutant strains for genetic dissection relative to currently adopted mouse models make it ideal for such analysis. Our results showed that irradiation of posterior pharynx bulbs and tails of C. elegans enhanced the level of germ cell apoptosis in bystander gonads. The irradiation of posterior pharynx bulbs also increased the level of DNA damage in bystander germ cells and genomic instability in the F1 progeny of irradiated worms, suggesting a potential carcinogenic risk in progeny even only somatic cells of parents are exposed to ionizing radiation (IR). It was also shown that DNA damage-induced germ cell death machinery and MAPK signaling pathways were both involved in the induction of germ cell apoptosis by microbeam induced bystander signaling, indicating a complex cooperation among multiple signaling pathways for bystander effects from somatic cells to germ cells.
Radiation Research | 2016
Huangqi Tang; Liangwen Chen; Lianyun Chen; Bin Chen; Ting Wang; Aifeng Yang; Furu Zhan; Lijun Wu; Po Bian
Although radioadaptive responses (RAR) and radiation-induced bystander effects (RIBE) are two important biological effects of low-dose radiation, there are currently only limited data that directly address their interaction, particularly in the context of whole organisms. In previous studies, we separately demonstrated RAR and RIBE using an in vivo system of C. elegans. In the current study, we further investigated their interaction in C. elegans, with the ratio of protruding vulva as the biological end point for RAR. Fourteen-hour-old worms were first locally targeted with a proton microbeam, and were then challenged with a high dose of whole-body gamma radiation. Microbeam irradiation of the posterior pharynx bulbs and rectal valves of C. elegans could significantly suppress the induction of protruding vulva by subsequent gamma irradiation, suggesting a contribution of RIBE to RAR in the context of the whole organism. Moreover, C. elegans has a unique DNA damage response in which the upstream DNA damage checkpoint is not active in most of somatic cells, including vulval cells. However, its impairment in atm-1 and hus-1 mutants blocked the RIBE-initiated RAR of vulva. Similarly, mutations in the atm-1 and hus-1 genes inhibited the RAR of vulva initiated by microbeam irradiation of the vulva itself. These results further confirm that the DNA damage checkpoint participates in the induction of RAR of vulva in C. elegans in a cell nonautonomous manner.
Radiation Research | 2016
Huangqi Tang; Liangwen Chen; Jialu Liu; Jue Shi; Qingqing Li; Ting Wang; Lijun Wu; Furu Zhan; Po Bian
Reproductive cell death (RCD) occurs after one or more cell divisions resulting from an insult such as radiation exposure or other treatments with carcinogens or mutagens. The radioadaptive response for RCD is usually investigated by in vitro or in vivo clonogenic assay. To date, this has not been demonstrated in the vulval tissue in Caenorhabditis elegans (C. elegans), which is a well established in vivo model for radiation-induced RCD. In this study to determine whether radioadaptive response occurs in the vulval tissue model of C. elegans, early larval worms were gamma irradiated with lower adaptive doses, followed by higher challenge doses. The ratio of protruding vulva was used to assess the RCD of vulval cells. The results of this study showed that the radioadaptive response for RCD in this vulval tissue model could be well induced by dose combinations of 5 + 75 Gy and 5 + 100 Gy at the time point of 14–16 h in worm development. In addition, the time course analysis indicated that radioresistance in vulval cells developed within 1.75 h after an adaptive dose and persisted for only a short period of time (2–4 h). DNA damage checkpoint and non-homologous end joining were involved in the radioadaptive response, exhibiting induction of protruding vulva in worms deficient in these two pathways similar to their controls. Interestingly, the DNA damage checkpoint was not active in the somatic vulval cells, and it was therefore suggested that the DNA damage checkpoint might mediate the radioadaptive response in a cell nonautonomous manner. Here, we show evidence of the occurrence of a radioadaptive response for RCD in the vulval tissue model of C. elegans. This finding provides a potential opportunity to gain further insight into the underlying mechanisms of the radioadaptive response for RCD, in view of the abundant genetic resources of C. elegans.
Oncotarget | 2017
Qingqing Li; Jue Shi; Lianyun Chen; Furu Zhan; Hang Yuan; Jun Wang; An Xu; Lijun Wu
Though the signaling events involved in radiation induced bystander effects (RIBE) have been investigated both in vitro and in vivo, the spatial function of these communications, especially the related signaling pathways, is not fully elucidated. In the current study, significant increases of DNA damage were clearly observed in C. elegans germline upon irradiation to both intra-system of posterior pharynx and inter-system of vulva, in which more severe damage, even to F1 generation worms, was shown for vulva irradiation. Spatial function assay indicated the DDR key components of mrt-2/hus-1/cep-1/ced-4 were indispensable in germ cells for both sites irradiation, while those components in somatic cells were either not (cep-1/ced-4) or partially (mrt-2/hus-1) required to promote apoptosis. Moreover, production of reactive oxygen species (ROS) indicated by the superoxide dismutase expression and the unfolded protein response of the mitochondria was found systemically involved in the initiation of these processes for both two site irradiation. These results will give a better understanding of the RIBE mechanisms in vivo, and invaluable to assess the clinical relevance to radiotherapy.Though the signaling events involved in radiation induced bystander effects (RIBE) have been investigated both in vitro and in vivo, the spatial function of these communications, especially the related signaling pathways, is not fully elucidated. In the current study, significant increases of DNA damage were clearly observed in C. elegans germline upon irradiation to both intra-system of posterior pharynx and inter-system of vulva, in which more severe damage, even to F1 generation worms, was shown for vulva irradiation. Spatial function assay indicated the DDR key components of mrt-2/hus-1/cep-1/ced-4 were indispensable in germ cells for both sites irradiation, while those components in somatic cells were either not (cep-1/ced-4) or partially (mrt-2/hus-1) required to promote apoptosis. Moreover, production of reactive oxygen species (ROS) indicated by the superoxide dismutase expression and the unfolded protein response of the mitochondria was found systemically involved in the initiation of these processes for both two site irradiation. These results will give a better understanding of the RIBE mechanisms in vivo, and invaluable to assess the clinical relevance to radiotherapy.
Archive | 2008
Mingliang Xu; Zengliang Yu; Furu Zhan; Li Jun; Chengchen Ji; Xiangqin Wang
Chinese Science Bulletin | 2004
Xufei Wang; Xiaohua Wang; Lianyun Chen; Zhi-Wen Hu; Jun Li; Yu Wu; Bin Chen; Suhua Hu; Jun Zhang; Mingliang Xu; Lijun Wu; Shaohu Wang; Huiyun Feng; Furu Zhan; Shixiang Peng; Chundong Hu; Shuqing Zhang; Jianjun Cheng; Zhongtao Shi; Hang Yuan; Haitao Yuan; Zengliang Yu
Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms | 2006
Zhi-Wen Hu; Lianyun Chen; Jun Li; Bin Chen; Mingliang Xu; Lei Qin; Lijun Wu; Furu Zhan; Zengliang Yu
Archive | 2010
Yongjian Xu; Qing Huang; Zengliang Yu; Lianyun Chen; Li Jun; Furu Zhan; Lijun Wu; Yuejin Wu
Archive | 2010
Yongjian Xu; Furu Zhan; Lianyun Chen; Li Jun; Bin Chen; Zengliang Yu; Lijun Wu; Yuejin Wu; Qing Huang