Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fusheng Tang is active.

Publication


Featured researches published by Fusheng Tang.


Journal of Cell Biology | 2006

The Vac14p–Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover

Jason E. Duex; Fusheng Tang; Lois S. Weisman

Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes in the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P2 (phosphatidylinositol [PI] 3,5-bisphosphate) levels transiently increase 20-fold. This causes the vacuole to undergo multiple acute changes. Control of PI3,5P2 levels occurs through regulation of both its synthesis and turnover. Synthesis is catalyzed by the PI3P 5-kinase Fab1p, and turnover is catalyzed by the PI3,5P2 5-phosphatase Fig4p. In this study, we show that two putative Fab1p activators, Vac7p and Vac14p, independently regulate Fab1p activity. Although Vac7p only regulates Fab1p, surprisingly, we find that Vac14 regulates both Fab1p and Fig4p. Moreover, Fig4p itself functions in both PI3,5P2 synthesis and turnover. In both the absence and presence of Vac7p, the Vac14p–Fig4p complex controls the hyperosmotic shock–induced increase in PI3,5P2 levels. These findings suggest that the dynamic changes in PI3,5P2 are controlled through a tight coupling of synthesis and turnover.


Nature | 2003

Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole

Fusheng Tang; Emily J. Kauffman; Jennifer L. Novak; Johnathan J. Nau; Natalie L. Catlett; Lois S. Weisman

Normal cellular function requires that organelles be positioned in specific locations. The direction in which molecular motors move organelles is based in part on the polarity of microtubules and actin filaments. However, this alone does not determine the intracellular destination of organelles. For example, the yeast class V myosin, Myo2p, moves several organelles to distinct locations during the cell cycle. Thus the movement of each type of Myo2p cargo must be regulated uniquely. Here we report a regulatory mechanism that specifically provides directionality to vacuole movement. The vacuole-specific Myo2p receptor, Vac17p, has a key function in this process. Vac17p binds simultaneously to Myo2p and to Vac8p, a vacuolar membrane protein. The transport complex, Myo2p–Vac17p–Vac8p, moves the vacuole to the bud, and is then disrupted through the degradation of Vac17p. The vacuole is ultimately deposited near the centre of the bud. Removal of a PEST sequence (a potential signal for rapid protein degradation) within Vac17p causes its stabilization and the subsequent ‘backward’ movement of vacuoles, which mis-targets them to the neck between the mother cell and the bud. Thus the regulated disruption of this transport complex places the vacuole in its proper location. This may be a general mechanism whereby organelles are deposited at their terminal destination.


BMC Bioinformatics | 2008

A structural approach for finding functional modules from large biological networks

Mutlu Mete; Fusheng Tang; Xiaowei Xu; Nurcan Yuruk

BackgroundBiological systems can be modeled as complex network systems with many interactions between the components. These interactions give rise to the function and behavior of that system. For example, the protein-protein interaction network is the physical basis of multiple cellular functions. One goal of emerging systems biology is to analyze very large complex biological networks such as protein-protein interaction networks, metabolic networks, and regulatory networks to identify functional modules and assign functions to certain components of the system. Network modules do not occur by chance, so identification of modules is likely to capture the biologically meaningful interactions in large-scale PPI data. Unfortunately, existing computer-based clustering methods developed to find those modules are either not so accurate or too slow.ResultsWe devised a new methodology called SCAN (Structural Clustering Algorithm for Networks) that can efficiently find clusters or functional modules in complex biological networks as well as hubs and outliers. More specifically, we demonstrated that we can find functional modules in complex networks and classify nodes into various roles based on their structures. In this study, we showed the effectiveness of our methodology using the budding yeast (Saccharomyces cerevisiae) protein-protein interaction network. To validate our clustering results, we compared our clusters with the known functions of each protein. Our predicted functional modules achieved very high purity comparing with state-of-the-art approaches. Additionally the theoretical and empirical analysis demonstrated a linear running-time of the algorithm, which is the fastest approach for networks.ConclusionWe compare our algorithm with well-known modularity based clustering algorithm CNM. We successfully detect functional groups that are annotated with putative GO terms. Top-10 clusters with minimum p-value theoretically prove that newly proposed algorithm partitions network more accurately then CNM. Furthermore, manual interpretations of functional groups found by SCAN show superior performance over CNM.


Journal of Cell Biology | 2003

Identification of an organelle-specific myosin V receptor

Kuniko Ishikawa; Natalie L. Catlett; Jennifer L. Novak; Fusheng Tang; Johnathan J. Nau; Lois S. Weisman

Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p–Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times.


Journal of Theoretical Biology | 2008

Modeling a simplified regulatory system of blood glucose at molecular levels

Weijiu Liu; Fusheng Tang

In this paper, we propose a new mathematical control system for a simplified regulatory system of blood glucose by taking into account the dynamics of glucose and glycogen in liver and the dynamics of insulin and glucagon receptors at the molecular level. Numerical simulations show that the proposed feedback control system agrees approximately with published experimental data. Sensitivity analysis predicts that feedback control gains of insulin receptors and glucagon receptors are robust. Using the model, we develop a new formula to compute the insulin sensitivity. The formula shows that the insulin sensitivity depends on various parameters that determine the insulin influence on insulin-dependent glucose utilization and reflect the efficiency of binding of insulin to its receptors. Using Lyapunov indirect method, we prove that the new control system is input-output stable. The stability result provides theoretical evidence for the phenomenon that the blood glucose fluctuates within a narrow range in response to the exogenous glucose input from food. We also show that the regulatory system is controllable and observable. These structural system properties could explain why the glucose level can be regulated.


Autophagy | 2008

A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery.

Fusheng Tang; Joseph W. Watkins; Maria Bermudez; Russell Gray; Adam Gaban; Ken Portie; Stephen Grace; Maurice Kleve; Gheorghe Craciun

While autophagy is believed to be beneficial for lifespan extension, it is controversial which forms or aspects of autophagy are the responsible ones. We addressed this by analyzing the lifespan of yeast autophagy mutants under caloric restriction, a longevity manipulation. Surprisingly, we discovered that the majority of proteins involved in macro-autophagy and several forms of micro-autophagy were dispensable for lifespan extension. The only autophagy protein that is critical for lifespan extension was Atg15p, a lipase that is located in the endoplasmic reticulum (ER) and transported to vacuoles for disintegrating membranes of autophagic bodies. We further found that vacuole-vacuole fusion was required for lifespan extension, which was indicated by the shortened lifespan of mutants missing proteins (ypt7Δ, nyv1Δ, vac8Δ) or lipids (erg6Δ) involved in fusion. Since a known function of vacuole-vacuole fusion is the maintenance of the vacuole membrane integrity, we analyzed aged vacuoles and discovered that aged cells had altered vacuolar morphology and accumulated autophagic bodies, suggesting that certain forms of autophagy do contribute to longevity. Like aged cells, erg6Δ accumulated autophagic bodies, which is likely caused by a defect in lipase instead of proteases due to the existence of multiple vacuolar proteases. Since macro-autophagy is not blocked by erg6Δ, we propose that a new form of autophagy transports Atg15p via the fusion of vacuoles with vesicles derived from ER, and we designate this putative form of autophagy as secretophagy. Pending future biochemical studies, the concept of secretophagy may provide a mechanism for autophagy in lifespan extension.


Molecular Biology of the Cell | 2009

PTC1 is required for vacuole inheritance and promotes the association of the myosin-V vacuole-specific receptor complex.

Yui Jin; P. Taylor Eves; Fusheng Tang; Lois S. Weisman

Organelle inheritance occurs during cell division. In Saccharomyces cerevisiae, inheritance of the vacuole, and the distribution of mitochondria and cortical endoplasmic reticulum are regulated by Ptc1p, a type 2C protein phosphatase. Here we show that PTC1/VAC10 controls the distribution of additional cargoes moved by a myosin-V motor. These include peroxisomes, secretory vesicles, cargoes of Myo2p, and ASH1 mRNA, a cargo of Myo4p. We find that Ptc1p is required for the proper distribution of both Myo2p and Myo4p. Surprisingly, PTC1 is also required to maintain the steady-state levels of organelle-specific receptors, including Vac17p, Inp2p, and Mmr1p, which attach Myo2p to the vacuole, peroxisomes, and mitochondria, respectively. Furthermore, Vac17p fused to the cargo-binding domain of Myo2p suppressed the vacuole inheritance defect in ptc1Delta cells. These findings suggest that PTC1 promotes the association of myosin-V with its organelle-specific adaptor proteins. Moreover, these observations suggest that despite the existence of organelle-specific receptors, there is a higher order regulation that coordinates the movement of diverse cellular components.


Traffic | 2006

Vac8p, an Armadillo Repeat Protein, Coordinates Vacuole Inheritance With Multiple Vacuolar Processes

Fusheng Tang; Yutian Peng; Johnathan J. Nau; Emily J. Kauffman; Lois S. Weisman

Vac8p, an armadillo (ARM) repeat protein, is required for multiple vacuolar processes. It functions in vacuole inheritance, cytoplasm‐to‐vacuole protein targeting pathway, formation of the nucleus–vacuole junction and vacuole–vacuole fusion. These functions each utilize a distinct Vac8p‐binding partner. Here, we report an additional Vac8p function: caffeine resistance. We show that Vac8p function in caffeine resistance is mediated via a newly identified Vac8p‐binding partner, Tco89p. The interaction between Vac8p and each binding partner requires an overlapping subset of Vac8p ARM repeats. Moreover, these partners can compete with each other for access to Vac8p. Furthermore, Vac8p is enriched in three separate subdomains on the vacuole, each with a unique binding partner dedicated to a different vacuolar function. These findings suggest that a major role of Vac8p is to spatially separate multiple functions thereby enabling vacuole inheritance to occur concurrently with other vacuolar processes.


PLOS Genetics | 2012

Dissecting the Gene Network of Dietary Restriction to Identify Evolutionarily Conserved Pathways and New Functional Genes

Daniel Wuttke; Richard Connor; Chintan Vora; Thomas Craig; Yang Li; Shona H. Wood; Olga Vasieva; Robert J. Shmookler Reis; Fusheng Tang; João Pedro de Magalhães

Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR–essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR–essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR–essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR–essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR–induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led us to suggest that DR commonly suppresses translation, while stimulating an ancient reproduction-related process.


Bellman Prize in Mathematical Biosciences | 2009

A molecular mathematical model of glucose mobilization and uptake.

Weijiu Liu; ChingChun Hsin; Fusheng Tang

A new molecular mathematical model is developed by considering the kinetics of GLUT2, GLUT3, and GLUT4, the process of glucose mobilization by glycogen phosphorylase and glycogen synthase in liver, and the dynamics of the insulin signaling pathway. The new model can qualitatively reproduce the experimental glucose and insulin data. It also enables us to use the Bendixson criterion about the existence of periodic orbits of a two-dimensional dynamical system to mathematically predict that the oscillations of glucose and insulin are not caused by liver, instead they would be caused by the mechanism of insulin secretion from pancreatic beta cells. Furthermore it enables us to conduct a parametric sensitivity analysis. The analysis shows that both glucose and insulin are most sensitive to the rate constant for conversion of PI(3,4,5)P(3) to PI(4,5)P(2), the multiplicative factor modulating the rate constant for conversion of PI(3,4,5)P(3) to PI(4,5)P(2), the multiplicative factor that modulates insulin receptor dephosphorylation rate, and the maximum velocity of GLUT4. Moreover, the sensitivity analysis predicts that an increase of the apparent velocity of GLUT4, a combination of elevated mobilization rate of GLUT4 to the plasma membrane and an extended duration of GLUT4 on the plasma membrane, will result in a decrease in the needs of plasma insulin. On the other hand, an increase of the GLUT4 internalization rate results in an elevated demand of insulin to stimulate the mobilization of GLUT4 from the intracellular store to the plasma membrane.

Collaboration


Dive into the Fusheng Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weijiu Liu

University of Central Arkansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Bush

University of Arkansas at Little Rock

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nurcan Yuruk

University of Arkansas at Little Rock

View shared research outputs
Researchain Logo
Decentralizing Knowledge