Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuyong Song is active.

Publication


Featured researches published by Fuyong Song.


Biochimica et Biophysica Acta | 2013

The activation of HO-1/Nrf-2 contributes to the protective effects of diallyl disulfide (DADS) against ethanol-induced oxidative stress

Tao Zeng; Cui-Li Zhang; Fuyong Song; Xiulan Zhao; Li-Hua Yu; Zhen-Ping Zhu; Keqin Xie

BACKGROUND Diallyl disulfide (DADS) is a garlic-derived organosulfur compound. The current study is designed to evaluate the protective effects of DADS against ethanol-induced oxidative stress, and to explore the underlying mechanisms by examining the HO-1/Nrf-2 pathway. METHODS We investigated whether or not DADS could activate the HO-1 in normal human liver cell LO2, and then evaluated the protective effects of DADS against ethanol-induced damage in LO2 cells and in acute ethanol-intoxicated mice. The biochemical parameters were measured using commercial kits. HO-1 mRNA level was determined by RT-PCR. Histopathology and immunofluorescence assay were performed with routine methods. Protein levels were measured by western blot. RESULTS DADS significantly increased the mRNA and protein levels of HO-1, stimulated the nuclear translocation of Nrf-2 and increased the phosphorylation of MAPK in LO2 cells. The nuclear translocation of Nrf-2 was abrogated by MAPK inhibitors. DADS significantly suppressed ethanol-induced elevation of lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities, decrease of glutathione (GSH) level, increase of malondialdehyde (MDA) levels, and apoptosis of LO2 cells, which were all blocked by ZnPPIX. In mice, DADS effectively suppressed acute ethanol-induced elevation of aminotransferase activities, and improved liver histopathological changes, which might be associated with HO-1 activation. CONCLUSION These results demonstrate that DADS could induce the activation of HO-1/Nrf-2 pathway, which may contribute to the protective effects of DADS against ethanol-induced liver injury. GENERAL SIGNIFICANCE DADS may be beneficial for the prevention and treatment of ALD due to significant activation of HO-1/Nrf-2 pathway.


Food and Chemical Toxicology | 2012

Garlic oil alleviated ethanol-induced fat accumulation via modulation of SREBP-1, PPAR-α, and CYP2E1.

Tao Zeng; Cui-Li Zhang; Fuyong Song; Xiulan Zhao; Keqin Xie

Garlic oil (GO) has been shown to partially attenuate ethanol-induced fatty liver, but the underlying mechanisms remain unclear. The current study was designed to evaluate the protective effects of GO against ethanol-induced steatosis in vitro and in vivo, and to explore potential mechanisms by investigating the sterol regulatory element binding protein-1c (SREBP-1c), peroxisome proliferators-activated receptor-α (PPAR-α), cytochrome P4502E1 (CYP2E1), and etc. In the in vitro study, human normal cell LO2 was exposed to 100 mM ethanol in the presence or absence of GO for 24 h. We found that ethanol increased the protein levels of n-SREBP-1c and CYP2E1, but decreased the protein levels of PPAR-α, which was significantly attenuated by GO co-treatment. In the in vivo study, male Kun-Ming mice were pretreated with single dose of GO (50-200 mg/kg body weight) at 2 h before ethanol (4.8 g/kg body weight) exposure. The changes of n-SREBP-1c, PPAR-α and CYP2E1 were paralleled well to those of in vitro study. Furthermore, GO significantly reduced the protein levels of fatty acid synthase (FAS), and suppressed ethanol-induced hepatic mitochondrial dysfunction. These results suggested that GO had the potential to ameliorate alcoholic steatosis which might be related to its modulation on SREBP-1c, PPAR-α, and CYP2E1.


Toxicology | 2012

PI3K/Akt pathway activation was involved in acute ethanol-induced fatty liver in mice.

Tao Zeng; Cui-Li Zhang; Fuyong Song; Xiulan Zhao; Li-Hua Yu; Zhen-Ping Zhu; Keqin Xie

Accumulating evidences support the important roles of sterol regulatory element-binding protein-1 (SREBP-1) activation in ethanol-induced fatty liver, but the underlying mechanisms for its activation are not fully understood. Recent studies have demonstrated that phosphatidylinositol 3 kinase (PI3K)/Akt pathway activation could enhance SREBP-1 activity. The current study was designed to investigate the potential roles of PI3K/Akt pathway in acute ethanol-induced fatty liver in mice. In the first experiment, mice were treated with ethanol (2.5 or 5 g/kg bw) or isocaloric/isovolumetric maltose-dextrin solution, and sacrificed at several time points after ethanol exposure. As expected, ethanol dose-dependently increased the hepatic triglyceride (TG) levels and the protein levels of the mature form of SREBP-1 (n-SREBP-1). The phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β) was significantly increased in mice treated with ethanol (5 g/kg bw), while the protein levels of PI3K-p85 were significantly reduced. To confirm the roles of PI3K/Akt pathway, mice were then pretreated with wortmannin (0.7 or 1.4 mg/kg bw), a specific PI3K/Akt pathway inhibitor, before exposure to ethanol. Interestingly, a dual effect of wortmannin was observed. Low dose of wortmannin significantly reduced the hepatic TG levels, while high dose of wortmannin aggravated ethanol-induced fatty liver. The ratio of LC3II/LC3I of wortmannin (1.4 mg/kg bw) group mice was significantly increased, while the p62 protein level was significantly decreased compared to those of ethanol group, which indicated that wortmannin (1.4 mg/kg bw) might suppress the lipid degradation by autophagy. These results supported the hypothesis that PI3K/Akt activation might be involved in acute ethanol-induced fatty liver, and PI3K/Akt inhibitors might have therapeutic potential for the treatment of ethanol-induced fatty liver.


Journal of the Science of Food and Agriculture | 2012

A meta‐analysis of randomized, double‐blind, placebo‐controlled trials for the effects of garlic on serum lipid profiles

Tao Zeng; Fang-Fang Guo; Cui-Li Zhang; Fuyong Song; Xiulan Zhao; Keqin Xie

BACKGROUND Inconsistent results were obtained for the lipid-regulating effects of garlic in clinical trials. With increasing interest in complementary medicine for hyperlipoidemia, it is important to explore the real effects of garlic. This meta- analysis was performed to investigate the influence of garlic on serum lipid parameters. RESULTS A total of 26 studies were included into meta-analysis. Overall, garlic was superior to placebo in reducing serum total cholesterol (TC) and triglyceride (TG) levels. Compared with the placebo groups, serum TC and TG levels in the garlic group were reduced by 0.28 (95% CI, -0.45, -0.11) mmol L⁻¹ (P = 0.001) and 0.13 (95% CI, -0.20, -0.06) mmol L⁻¹ (P < 0.001), respectively. The effects of garlic were more striking in subjects with long-term intervention and higher baseline TC levels. Garlic powder and aged garlic extract were more effective in reducing serum TC levels, while garlic oil was more effective in lowering serum TG levels. In contrast, garlic did not influence other lipid parameters, including low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), apolipoprotein B, and TC/HDL-C ratio. CONCLUSION Garlic could reduce serum TC and TG levels, and garlic therapy should benefit patients with risk of cardiovascular diseases.


Human & Experimental Toxicology | 2009

The modulatory effects of garlic oil on hepatic cytochrome P450s in mice

Tao Zeng; Cui-Li Zhang; Fuyong Song; Xiaoying Han; Keqin Xie

In order to probe into the effects of garlic oil (GO) on the hepatic CYP2E1, CYP1A2 and CYP3A, male Kun-Ming mice were treated with GO (100 mg/kg body weight) or corn oil for 1 day or consecutive 60 days, respectively, and then the protein expressions and the activities of the enzymes were examined. GO did not alter the physical activities of mice and did not induce lesion to the liver. However, it dramatically inhibited the activities and protein levels of hepatic CYP2E1 and 1A2, but not CYP3A. In addition, we noticed that the inhibition of CYP2E1 and 1A2 by GO was more potent in group of 1 day treatment than those in group of 60 days treatment. Compared with the respective control value, the protein levels of CYP2E1 were decreased by 87.40% (p < .01) and 62.26% (p < .01) by 1 day and 60 days of GO treatment, respectively, while the CYP1A2 protein levels were decreased by 70.76% (p < .01) and 41.49% (p < .01), respectively. These data indicated that the mice could adapt to the prolonged treatment, which might be one reasonable explanation for the conflicting data in the literature. The CYP2E1 and 1A2 suppression might contribute to its hepatoprotection, and data about CYP3A indicated that GO was unlikely to alter the metabolism of the concomitantly used drugs.


PLOS ONE | 2014

CMZ Reversed Chronic Ethanol-Induced Disturbance of PPAR-α Possibly by Suppressing Oxidative Stress and PGC-1α Acetylation, and Activating the MAPK and GSK3β Pathway

Tao Zeng; Cui-Li Zhang; Fuyong Song; Xiulan Zhao; Keqin Xie

Background Cytochrome P4502E1 (CYP2E1) has been suggested to play critical roles in the pathogenesis of alcoholic fatty liver (AFL), but the underlying mechanisms remains unclear. The current study was designed to evaluate whether CYP2E1 suppression by chlormethiazole (CMZ) could suppress AFL in mice, and to explore the underlying mechanisms. Methods Mice were treated with or without CMZ (50 mg/kg bw, i.p.) and subjected to liquid diet with or without ethanol (5%, w/v) for 4 weeks. Biochemical parameters were measured using commercial kits. The protein and mRNA levels were detected by western blot and qPCR, respectively. Histopathology and immunohistochemical assay were performed with routine methods. Results CYP2E1 inhibition by CMZ completely blocked AFL in mice, shown as the decline of the hepatic and serum triglyceride levels, and the fewer fat droplets in the liver sections. Chronic ethanol exposure led to significant decrease of the mRNA and protein levels of peroxisome proliferator-activated receptor α (PPAR-α), which was blocked by CMZ co-treatment. CMZ co-treatment suppressed ethanol-induced oxidative stress, overproduction of tumor necrosis α (TNF-α), and decrease of protein levels of the PPAR-α co-activators including p300 and deacetylated PGC1-α. Furthermore, CMZ co-treatment led to the activation of AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), and PI3K/Akt/GSK3β pathway. However, chronic ethanol-induced decline of acyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) protein levels was partially restored by CMZ, while the activation of autophagy appeared to be suppressed by CMZ. Conclusion These results suggested that CMZ suppressed chronic ethanol-induced oxidative stress, TNF-α overproduction, decline of p300 protein level and deacetylation of PGC1-α, and activated AMPK, MAPK, and PI3K/Akt/GSK3β pathway, which might contribute to the activation of PPAR-α and account for the protection of CMZ against AFL.


Neurochemistry International | 2013

Activation of mitochondria-mediated apoptotic pathway in tri-ortho-cresyl phosphate-induced delayed neuropathy.

Chaoshuang Zou; Ruirui Kou; Yuan Gao; Keqin Xie; Fuyong Song

Previous studies suggest that abnormal neurons death has been implicated in organophosphate-induced delayed neuropathy (OPIDN). However, the precise mechanism of neuronal death in OPIDN remains largely unknown. In this study, adult hens were treated with a dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP) by gavage, and then sacrificed on the time-points of 1, 5, 10, and 21 days after dosing TOCP, respectively. The apoptotic change of spinal cord neurons induced by TOCP was examined, and the role of mitochondria-mediated apoptosis of neurons during OPIDN was investigated. TUNEL assays showed that apoptotic neurons in hen spinal cords began to appear on day 5 following TOCP exposure. Immunohistochemistry and western blot analysis revealed a translocation of cytochrome C from mitochondria to cytoplasm after dosing TOCP. Moreover, the level of Bcl-2, Bcl-xl, Pro-caspase3 and Pro-caspase9 in hen spinal cord was significantly decreased, whereas that of Bax and cleaved-PARP was significantly elevated. Taken together, these findings indicate that the administration of TOCP can induce neuron apoptosis in hen spinal cords, which might be mediated by the activation of mitochondrial apoptotic pathway.


Toxicology | 2008

Changes of cytoskeletal proteins in nerve tissues and serum of rats treated with 2,5-hexanedione.

Qingshan Wang; Li-Yan Hou; Cui-Li Zhang; Fuyong Song; Keqin Xie

To investigate the mechanisms and biomarker of the neuropathy induced by 2,5-hexanedione (HD), male Wistar rats were administrated HD at dosage of 200 or 400mg/kg for 8 weeks (five-times per week). All rats were sacrificed after 8 weeks of treatment and the cerebrum cortex (CC), spinal cord (SC) and sciatic nerves (SN) were dissected, homogenized and used for the determination of cytoskeletal proteins by western blotting. The levels of neurofilaments (NFs) subunits (NF-L, NF-M and NF-H) in nerve tissues of 200 and 400mg/kg HD rats significantly decreased in both the supernatant and pellet fractions. Furthermore, significant negative correlations between NFs levels and gait abnormality were observed. As for microtubule (MT) and microfilament (MF) proteins, the levels of alpha-tubulin, beta-tubulin and beta-actin in the supernatant and pellet fraction of SN significantly decreased in 200 and 400mg/kg HD rats and correlated negatively with gait abnormality. However, the contents of MT and MF proteins in CC and SC were inconsistently affected and had no significant correlation with gait abnormality. The levels of NF-L and NF-H in serum significantly increased, while NF-M, alpha-tubulin, beta-tubulin and beta-actin contents remain unchanged. A significant positive correlation (R=0.9427, P<0.01) was observed between gait abnormality and NF-H level in serum as the intoxication went on. These findings suggested that HD intoxication resulted in a progressive decline of cytoskeletal protein contents, which might be relevant to the mechanisms of HD-induced neuropathy. NF-H was the most sensitive index, which may serve as a good indicator for neurotoxicity of n-hexane or HD.


PLOS ONE | 2013

Roles of cytochrome P4502E1 gene polymorphisms and the risks of alcoholic liver disease: a meta-analysis.

Tao Zeng; Fang-Fang Guo; Cui-Li Zhang; Fuyong Song; Xiulan Zhao; Keqin Xie

Background Previous studies investigating the association between cytochrome P4502E1 (CYP2E1) polymorphisms and the risk of alcoholic liver diseases (ALD) have yielded conflicting results. Thus, a meta-analysis was performed to clarify the association between CYP2E1 polymorphisms and the risks of ALD. Methods A comprehensive literature search was conducted to identify the relevant studies. The fixed or random effect model was selected based on the heterogeneity test among studies. Publication bias was estimated using Begg’s funnel plots and Egger’s regression test. Results A total of 27 and 9 studies were finally included for the association between the CYP2E1 Pst I/Rsa I or Dra I polymorphisms and the risks of ALD, respectively. Overall, the combined results showed that homozygous genotype c2c2 was significantly associated with increase risk of ALD in worldwide populations (c2c2 vs. c1c1: OR = 3.12, 95%CI 1.91–5.11) when ALD patients were compared with alcoholics without ALD. Significant associations between CYP2E1 Pst I/Rsa I polymorphism and ALD risk were also observed in Asians (c2c2 vs. c1c1: OR = 4.11, 95%CI 2.32–7.29) and in Caucasians (c2c2/c1c2 vs. c1c1: OR = 1.58, 95%CI 1.04–2.42) when ALD patients were compared with alcoholics without ALD. However, subgroup analysis stratified by ALD types showed that CYP2E1 Pst I/Rsa I polymorphism was not significantly associated with the risks of alcoholic cirrhosis (ALC). No significant association was observed between CYP2E1 Dra I polymorphism and ALD risks. Conclusion This meta-analysis suggested that CYP2E1 Pst I/Rsa I polymorphism might be not significantly associated with advanced form of ALD (ALC), but might be significantly associated with other form of ALD such as steatosis, hepatisis, fibrosis. Furthermore, CYP2E1 Dra I polymorphism might be not significantly associated with the ALD risks. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.


Toxicology Letters | 2012

Changes in beclin-1 and micro-calpain expression in tri-ortho-cresyl phosphate-induced delayed neuropathy

Fuyong Song; Xiaoying Han; Tao Zeng; Cui-Li Zhang; Chaoshuang Zou; Keqin Xie

Tri-ortho-cresyl phosphate (TOCP) can cause toxic neuropathy known as organophosphate-induced delayed neuropathy (OPIDN), which is pathologically characterized by the swollen axon containing aggregations of neurofilaments, microtubules, and multivesicular vesicles. Autophagy is a self-degradative process which plays a housekeeping role in removing misfolded proteins and damaged organelles. The current study was designed to investigate the possible roles of autophagy in the pathogenesis of OPIDN. Adult hens were treated with a dose of 750mg/kg TOCP by gavage, or injected subcutaneously with 60mg/kg phenylmethanesulfonyl fluoride (PMSF) dissolved in DMSO 24h earlier and subsequently treated with TOCP, then sacrificed on the time-points of 0, 1, 5, 10, and 21 days after dosing of TOCP respectively. The levels of beclin-1 and μ-calpain in tibial nerves and spinal cords were determined by immunoblotting. The results showed that in both tissues TOCP increased the expression of μ-calpain while decreased that of beclin-1. When given before TOCP administration, PMSF pretreatment could protect hens against the delayed neuropathy. In the meantime, pretreatment with PMSF reduced calpain expression below basal and increased beclin-1 expression above basal in tibial nerve, whereas it simply returned calpain and beclin-1 expression to their basal levels in spinal cord. In conclusion, the intoxication of TOCP was associated with a significant change of beclin-1 in hen nervous tissues, which suggested that disruption of autophagy-regulated machinery in neurons might be involved in the pathogenesis of OPIDN.

Collaboration


Dive into the Fuyong Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingshan Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge