Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuyou Liang is active.

Publication


Featured researches published by Fuyou Liang.


Journal of Biomechanics | 2009

Biomechanical characterization of ventricular-arterial coupling during aging : A multi-scale model study

Fuyou Liang; Shu Takagi; Ryutaro Himeno; Hao Liu

Left ventricular-arterial (VA) coupling has been recognized to be of great significance in understanding both the global and local mechanical performance of the circulatory system. In this study, a closed-loop multi-scale model of the human cardiovascular system is established for the purpose of studying the coupled VA hemodynamic changes during aging. Obtained results show that age-associated changes in arterial properties have some negative but relatively small influences on left ventricular (LV) mechanical performance, whereas they progressively increase LV and aortic systolic pressures, and aortic pulse pressure during aging. Wave analysis reveals that increased aortic characteristic impedance and premature wave reflection induced by arterial stiffening are two coexistent factors responsible for aortic systolic hypertension and increased aortic pulse pressure at old age. In contrast, aortic dilatation can partly counteract the negative influences of arterial stiffening. Coupled LV-systolic and arterial stiffening (a constant VA coupling index) well preserves LV mechanical performance given normal LV diastolic function during aging, but with a concomitant further elevation of LV and aortic systolic pressures. Furthermore, it is found that the states of arterial, LV-systolic and diastolic stiffness can be distinguished by investigating the sensitivity of LV-systolic pressure to various cardiac indices.


Biomedical Engineering Online | 2011

A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery

Fuyou Liang; Kazuaki Fukasaku; Hao Liu; Shu Takagi

BackgroundCerebral hyperperfusion syndrome develops in a small subset of patients following carotid artery surgery (CAS) performed to treat severe carotid artery stenosis. This syndrome has been found to have a close correlation with cerebral hyperperfusion occurring after CAS. The purpose of this study is to investigate whether and how the anatomy of the Circle of Willis (CoW) of the cerebral circulation influences post-CAS cerebral hyperperfusion.MethodsA computational model of the cerebral circulation coupled with the global cardiovascular system has been developed to investigate hemodynamic events associated with CAS. Nine topological structures of the CoW were investigated in combination with various distribution patterns of stenosis in the feeding arteries of the cerebral circulation.ResultsThe occurrence of post-CAS cerebral hyperperfusion was predicted for the CoW structures that have poor collateral pathways between the stenosed cerebral feeding arteries and the remaining normal feeding arteries. The risk and the localization of post-CAS hyperperfusion were determined jointly by the anatomy of the CoW and the distribution pattern of stenosis in the cerebral feeding arteries. The presence of basilar artery stenosis or contralateral ICA stenosis increased the risk of post-CAS hyperperfusion and enlarged the cerebral region affected by hyperperfusion. For a certain CoW structure, the diameters of the cerebral communicating arteries and the severity of carotid artery stenosis both had a significant influence on the computed post-CAS cerebral hyperperfusion rates. Moreover, post-CAS cerebral hyperperfusion was predicted to be accompanied with an excessively high capillary transmural pressure.ConclusionsThis study demonstrated the importance of considering the anatomy of the CoW in assessing the risk of post-CAS cerebral hyperperfusion. Particularly, since the anatomy of the CoW and the distribution pattern of stenosis in the cerebral feeding arteries jointly determine the risk and localization of post-CAS cerebral hyperperfusion, a patient-specific hemodynamic analysis aimed to help physicians identify patients at high risk of cerebral hyperperfusion should account for the combined effect of the anatomy of cerebral arteries and cerebral feeding artery stenoses on cerebral hemodynamics.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study

Fuyou Liang; Hideaki Senzaki; Clara Kurishima; Koichi Sughimoto; Ryo Inuzuka; Hao Liu

The physiological limitations of the Fontan circulation have been extensively addressed in the literature. Many studies emphasized the importance of pulmonary vascular resistance in determining cardiac output (CO) but gave little attention to other cardiovascular properties that may play considerable roles as well. The present study was aimed to systemically investigate the effects of various cardiovascular properties on clinically relevant hemodynamic variables (e.g., CO and central venous pressure). To this aim, a computational modeling method was employed. The constructed models provided a useful tool for quantifying the hemodynamic effects of any cardiovascular property of interest by varying the corresponding model parameters in model-based simulations. Herein, the Fontan circulation was studied compared with a normal biventricular circulation so as to highlight the unique characteristics of the Fontan circulation. Based on a series of numerical experiments, it was found that 1) pulmonary vascular resistance, ventricular diastolic function, and systemic vascular compliance play a major role, while heart rate, ventricular contractility, and systemic vascular resistance play a secondary role in the regulation of CO in the Fontan circulation; 2) CO is nonlinearly related to any single cardiovascular property, with their relationship being simultaneously influenced by other cardiovascular properties; and 3) the stability of central venous pressure is significantly reduced in the Fontan circulation. The findings suggest that the hemodynamic performance of the Fontan circulation is codetermined by various cardiovascular properties and hence a full understanding of patient-specific cardiovascular conditions is necessary to optimize the treatment of Fontan patients.


International Journal for Numerical Methods in Biomedical Engineering | 2014

Patient‐specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation

Fuyou Liang; Koichi Sughimoto; Kozo Matsuo; Hao Liu; Shu Takagi

The assessment of cardiovascular function is becoming increasingly important for the care of patients with single-ventricle defects. However, most measurement methods available in the clinical setting cannot provide a separate measure of cardiac function and loading conditions. In the present study, a numerical method has been proposed to compensate for the limitations of clinical measurements. The main idea was to estimate the parameters of a cardiovascular model by fitting model simulations to patient-specific clinical data via parameter optimization. Several strategies have been taken to establish a well-posed parameter optimization problem, including clinical data-matched model development, parameter selection based on an extensive sensitivity analysis, and proper choice of parameter optimization algorithm. The numerical experiments confirmed the ability of the proposed parameter optimization method to uniquely determine the model parameters given an arbitrary set of clinical data. The method was further tested in four patients undergoing the Fontan operation. Obtained results revealed a prevalence of ventricular abnormalities in the patient cohort and at the same time demonstrated the presence of marked inter-patient differences and preoperative to postoperative changes in cardiovascular function. Because the method allows a quick assessment and makes use of clinical data available in clinical practice, its clinical application is promising.


Computer Methods in Biomechanics and Biomedical Engineering | 2013

A computational model of the cardiovascular system coupled with an upper-arm oscillometric cuff and its application to studying the suprasystolic cuff oscillation wave, concerning its value in assessing arterial stiffness.

Fuyou Liang; Shu Takagi; Ryutaro Himeno; Hao Liu

A variety of methods have been proposed to noninvasively assess arterial stiffness using single or multiple oscillometric cuffs. A common pitfall of most of such methods is that the individual-specific accuracy of assessment is not clearly known due to an insufficient understanding of the relationships between the characteristics of cuff oscillometry and cardiovascular properties. To provide a tool for quantitatively investigating such relationships, we developed a computational model of the cardiovascular system coupled with an oscillometric cuff wrapped around the left upper arm. The model was first examined by simulating the inflation–deflation process of the cuff. The simulated results reasonably reproduced the well-established characteristics of cuff oscillometry. The model was then applied to study the oscillation wave generated by a suprasystolic cuff that is currently under considerable debate regarding its validity for assessing aortic stiffness. The simulated results confirmed the experimental observations that the suprasystolic cuff oscillation wave resembles the blood pressure wave in the proximal brachial artery and is characterised by the presence of two systolic peaks. A systemic analysis on the simulation results for various cardiovascular/physiological conditions revealed that neither the time lag nor the height difference between the two peaks is a direct indicator of aortic stiffness. These findings provided useful evidence for explaining the conflicts among previous studies. Finally, it was stressed that although the emphasis of this study has been placed on a suprasystolic upper-arm cuff, the model could be employed to address more issues related to oscillometric cuffs.


Journal of Biomechanics | 2016

Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model

Debao Guan; Fuyou Liang; Pierre A. Gremaud

One-dimensional (1D) modeling is a widely adopted approach for studying wave propagation phenomena in the arterial system. Despite the frequent use of the Windkessel (WK) model to prescribe outflow boundary conditions for 1D arterial tree models, it remains unclear to what extent the inherent limitation of the WK model in describing wave propagation in distal vasculatures affect hemodynamic variables simulated at the arterial level. In the present study, a 1D model of the arterial tree was coupled respectively with a WK boundary model and a structured-tree (ST) boundary model, yielding two types of arterial tree models. The effective resistances, compliances and inductances of the WK and ST boundary models were matched to facilitate quantitative comparisons. Obtained results showed that pressure/flow waves simulated by the two models were comparable in the aorta, whereas, their discrepancies increased towards the periphery. Wave analysis revealed that the differences in reflected waves generated by the boundary models were the major sources of pressure wave discrepancies observed in large arteries. Additional simulations performed under aging conditions demonstrated that arterial stiffening with age enlarged the discrepancies, but with the effects being partly counteracted by physiological aortic dilatation with age. These findings suggest that the method adopted for modeling the outflow boundary conditions has considerable influence on the performance of a 1D arterial tree model, with the extent of influence varying with the properties of the arterial system.


Journal of Biomechanical Engineering-transactions of The Asme | 2015

Numerical Study of Cerebroarterial Hemodynamic Changes Following Carotid Artery Operation: A Comparison Between Multiscale Modeling and Stand-Alone Three-Dimensional Modeling

Fuyou Liang; Marie Oshima; Huaxiong Huang; Hao Liu; Shu Takagi

Free outflow boundary conditions have been widely adopted in hemodynamic model studies, they, however, intrinsically lack the ability to account for the regulatory mechanisms of systemic hemodynamics and hence carry a risk of producing incorrect results when applied to vascular segments with multiple outlets. In the present study, we developed a multiscale model capable of incorporating global cardiovascular properties into the simulation of blood flows in local vascular segments. The multiscale model was constructed by coupling a three-dimensional (3D) model of local arterial segments with a zero-one-dimensional (0-1-D) model of the cardiovascular system. Numerical validation based on an idealized model demonstrated the ability of the multiscale model to preserve reasonable pressure/flow wave transmission among different models. The multiscale model was further calibrated with clinical data to simulate cerebroarterial hemodynamics in a patient undergoing carotid artery operation. The results showed pronounced hemodynamic changes in the cerebral circulation following the operation. Additional numerical experiments revealed that a stand-alone 3D model with free outflow conditions failed to reproduce the results obtained by the multiscale model. These results demonstrated the potential advantage of multiscale modeling over single-scale modeling in patient-specific hemodynamic studies. Due to the fact that the present study was limited to a single patient, studies on more patients would be required to further confirm the findings.


Journal of Biomechanics | 2016

Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network

Fuyou Liang; Xiaosheng Liu; Ryuhei Yamaguchi; Hao Liu

Recent studies raised increasing concern about the reliability of computer models in reproducing in vivo hemodynamics in cerebral aneurysms. Boundary condition problem is among the most frequently addressed issues since three-dimensional (3-D) modeling is usually restricted to local arterial segments. The present study focused on aneurysms on the anterior communicating artery (ACoA) which represent a large subgroup of detected cerebral aneurysms and, in particular, have a relatively high risk of rupture compared to aneurysms located in other regions. The sensitivity of blood flows in three ACoA aneurysms to boundary conditions was investigated using 3-D hemodynamic models. The boundary conditions of the 3-D models were predicted by a one-dimensional (1-D) model of the cerebral arterial network. The parameters of the 1-D model were assigned based respectively on population-averaged data and patient-specific data derived from medical images, yielding a population-generic model and a patient-specific model. In addition, particle image velocimetry (PIV) experiments were performed to validate the code used to simulate intra-aneurysmal blood flows. Obtained results showed that switching the boundary conditions of the aneurysm models from population-generic ones to patient-specific ones led to pronounced changes in simulated intra-aneurysmal flow patterns in terms of vortex structure, impingement region and the magnitude and spatial distribution of wall shear stress and oscillatory shear index. In particular, the way and the degree in which hemodynamic quantities are influenced by boundary conditions exhibited pronounced inter-patient variability. In summary, our study underlines the importance of patient-specific treatment of boundary conditions in model studies focusing on ACoA aneurysms.


Heart and Vessels | 2014

Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms.

Koichi Sughimoto; Yoshiharu Takahara; Kenji Mogi; Kenji Yamazaki; Ken-ichi Tsubota; Fuyou Liang; Hao Liu

Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.


Tohoku Journal of Experimental Medicine | 2017

Non-Invasive Assessment of Early Atherosclerosis Based on New Arterial Stiffness Indices Measured with an Upper-Arm Oscillometric Device

Yaping Zhang; Ping Yin; Zuojun Xu; Yushui Xie; Changqian Wang; Yuqi Fan; Fuyou Liang; Zhaofang Yin

The clinical significance of detecting early atherosclerosis is now widely recognized. Measurement methods available at present are usually not suitable for use in primary care where rapid screening for a large population is needed. The Arterial Velocity-pulse Index (AVI) and Arterial Pressure-volume Index (API) are new noninvasive arterial stiffness indices that can be rapidly measured using an oscillometric device. The purpose of this study was to determine whether high AVI and API values are predictive of early atherosclerosis prior to the onset of obstructive coronary artery disease (CAD). A total of 183 patients were enrolled and allocated to the CAD group (n = 109), early atherosclerosis (AS) group (n = 34) or an apparently healthy (non-AS) group (n = 40) based on the results of angiographic examinations. Measurements for arterial blood pressure, AVI, API and brachial-ankle pulse wave velocity (baPWV) were collected. Statistical analyses revealed that AVIs were significantly lower in the non-AS group than in the AS group and the CAD group. The inter-group differences in API were not statistically significant among the 3 patient groups. As a reference, baPWV was found to be statistically higher in the CAD group than in the non-AS group, whereas there was no significant difference between the CAD group and the AS group, or between the AS group and the non-AS group. The AVI and API were both significantly correlated with baPWV. This study demonstrated that AVI was more sensitive than baPWV and API in indicating early atherosclerosis, although elevated AVI and baPWV were both predictive of CAD.

Collaboration


Dive into the Fuyou Liang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaofang Yin

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge