Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuyuki Karube is active.

Publication


Featured researches published by Fuyuki Karube.


Nature Reviews Neuroscience | 2008

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

Giorgio A. Ascoli; Lidia Alonso-Nanclares; Stewart A. Anderson; German Barrionuevo; Ruth Benavides-Piccione; Andreas Burkhalter; György Buzsáki; Bruno Cauli; Javier DeFelipe; Alfonso Fairén; Dirk Feldmeyer; Gord Fishell; Yves Frégnac; Tamás F. Freund; Daniel Gardner; Esther P. Gardner; Jesse H. Goldberg; Moritz Helmstaedter; Shaul Hestrin; Fuyuki Karube; Zoltán F. Kisvárday; Bertrand Lambolez; David A. Lewis; Oscar Marín; Henry Markram; Alberto Muñoz; Adam M. Packer; Carl C. H. Petersen; Kathleen S. Rockland; Jean Rossier

Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.


The Journal of Neuroscience | 2004

Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes

Fuyuki Karube; Yoshiyuki Kubota; Yasuo Kawaguchi

GABAergic nonpyramidal cells, cortical interneurons, consist of heterogeneous subtypes differing in their axonal field and target selectivity. It remains to be investigated how the diverse innervation patterns are generated and how these spatially complicated, but synaptically specific wirings are achieved. Here, we asked whether a particular cell type obeys a specific branching and bouton arrangement principle or differs from others only in average morphometric values of the morphological template common to nonpyramidal cells. For this purpose, we subclassified nonpyramidal cells within each physiological class by quantitative parameters of somata, dendrites, and axons and characterized axon branching and bouton distribution patterns quantitatively. Each subtype showed a characteristic set of vertical and horizontal bouton spreads around the somata. Each parameter, such as branching angles, internode or interbouton intervals, followed its own characteristic distribution pattern irrespective of subtypes, suggesting that nonpyramidal cells have the common mechanism for formation of the axon branching pattern and bouton arrangement. Fitting of internode and interbouton interval distributions to the exponential indicated their apparent random occurrence. Decay constants of the fitted exponentials varied among nonpyramidal cells, but each subtype expressed a particular set of interbouton and internode interval averages. The distinctive combination of innervation field shape and local axon phenotypes suggests a marked functional difference in the laminar and columnar integration properties of different GABAergic subtypes, as well as the subtype-specific density of inhibited targets.


Cerebral Cortex | 2011

Selective Coexpression of Multiple Chemical Markers Defines Discrete Populations of Neocortical GABAergic Neurons

Yoshiyuki Kubota; Naoki Shigematsu; Fuyuki Karube; Akio Sekigawa; Satoko Kato; Noboru Yamaguchi; Yasuharu Hirai; Mieko Morishima; Yasuo Kawaguchi

Whether neocortical γ-aminobutyric acid (GABA) cells are composed of a limited number of distinct classes of neuron, or whether they are continuously differentiated with much higher diversity, remains a contentious issue for the field. Most GABA cells of rat frontal cortex have at least 1 of 6 chemical markers (parvalbumin, calretinin, alpha-actinin-2, somatostatin, vasoactive intestinal polypeptide, and cholecystokinin), with each chemical class comprising several distinct neuronal subtypes having specific physiological and morphological characteristics. To better clarify GABAergic neuron diversity, we assessed the colocalization of these 6 chemical markers with corticotropin-releasing factor (CRF), neuropeptide Y (NPY), the substance P receptor (SPR), and nitric oxide synthase (NOS); these 4 additional chemical markers suggested to be expressed diversely or specifically among cortical GABA cells. We further correlated morphological and physiological characteristics of identified some chemical subclasses of inhibitory neurons. Our results reveal expression specificity of CRF, NPY, SPR, and NOS in morphologically and physiologically distinct interneuron classes. These observations support the existence of a limited number of functionally distinct subtypes of GABA cells in the neocortex.


The Journal of Neuroscience | 2007

Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents

Yoshiyuki Kubota; Sayuri Hatada; Satoru Kondo; Fuyuki Karube; Yasuo Kawaguchi

Fast inhibition in the cortex is gated primarily at GABAergic synapses formed by local interneurons onto postsynaptic targets. Although GABAergic inputs to the somata and axon initial segments of neocortical pyramidal neurons are associated with direct inhibition of action potential generation, the role of GABAergic inputs to distal dendritic segments, including spines, is less well characterized. Because a significant proportion of inhibitory input occurs on distal dendrites and spines, it will be important to determine whether these GABAergic synapses are formed selectively by certain classes of presynaptic cells onto specific postsynaptic elements. By electron microscopic observations of synapses formed by different subtypes of nonpyramidal cells, we found that a surprisingly large fraction (33.4 ± 9.3%) of terminals formed symmetrical synaptic junctions onto a subset of cortical spines that were mostly coinnervated by an asymmetrical terminal. Using VGLUT1 and VGLUT2 isoform of the glutamate vesicular transporter immunohistochemistry, we found that the double-innervated spines selectively received thalamocortical afferents expressing the VGLUT2 but almost never intracortical inputs expressing the VGLUT1. When comparing the volumes of differentially innervated spines and their synaptic junction areas, we found that spines innervated by VGLUT2-positive terminal were significantly larger than spines innervated by VGLUT1-positive terminal and that these spines had larger, and more often perforated, synapses than those of spines innervated by VGLUT1-positive afferent. These results demonstrate that inhibitory inputs to pyramidal cell spines may preferentially reduce thalamocortical rather than intracortical synaptic transmission and are therefore positioned to selectively gate extracortical information.


The Journal of Neuroscience | 2012

Specialized Cortical Subnetworks Differentially Connect Frontal Cortex to Parahippocampal Areas

Yasuharu Hirai; Mieko Morishima; Fuyuki Karube; Yasuo Kawaguchi

How information is manipulated and segregated within local circuits in the frontal cortex remains mysterious, in part because of inadequate knowledge regarding the connectivity of diverse pyramidal cell subtypes. The frontal cortex participates in the formation and retrieval of declarative memories through projections to the perirhinal cortex, and in procedural learning through projections to the striatum/pontine nuclei. In rat frontal cortex, we identified two pyramidal cell subtypes selectively projecting to distinct subregions of perirhinal cortex (PRC). PRC-projecting cells in upper layer 2/3 (L2/3) of the frontal cortex projected to perirhinal area 35, while neurons in L5 innervated perirhinal area 36. L2/3 PRC-projecting cells partially overlapped with those projecting to the basolateral amygdala. L5 PRC-projecting cells partially overlapped with crossed corticostriatal cells, but were distinct from neighboring corticothalamic (CTh)/corticopontine cells. L5 PRC-projecting and CTh cells were different in their electrophysiological properties and dendritic/axonal morphologies. Within the frontal cortex, L2/3 PRC-projecting cells innervated L5 PRC-projecting and CTh cells with similar probabilities, but received feedback excitation only from PRC-projecting cells. These data suggest that specific neuron subtypes in different cortical layers are reciprocally excited via interlaminar loops. Thus, two interacting output channels send information from the frontal cortex to different hierarchical stages of the parahippocampal network, areas 35 and 36, with additional collaterals selectively targeting the amygdala or basal ganglia, respectively. Combined with the hierarchical connectivity of PRC-projecting and CTh cells, these observations demonstrate an exquisite diversification of frontal projection neurons selectively connected according to their participation in distinct memory subsystems.


Scientific Reports | 2011

Conserved properties of dendritic trees in four cortical interneuron subtypes

Yoshiyuki Kubota; Fuyuki Karube; Masaki Nomura; Allan T. Gulledge; Atsushi Mochizuki; Andreas Schertel; Yasuo Kawaguchi

Dendritic trees influence synaptic integration and neuronal excitability, yet appear to develop in rather arbitrary patterns. Using electron microscopy and serial reconstructions, we analyzed the dendritic trees of four morphologically distinct neocortical interneuron subtypes to reveal two underlying organizational principles common to all. First, cross-sectional areas at any given point within a dendrite were proportional to the summed length of all dendritic segments distal to that point. Consistent with this observation, total cross-sectional area was almost perfectly conserved at bifurcation points. Second, dendritic cross-sections became progressively more elliptical at more proximal, larger diameter, dendritic locations. Finally, computer simulations revealed that these conserved morphological features limit distance dependent filtering of somatic EPSPs and facilitate distribution of somatic depolarization into all dendritic compartments. Because these features were shared by all interneurons studied, they may represent common organizational principles underlying the otherwise diverse morphology of dendritic trees.


Frontiers in Neural Circuits | 2016

The Diversity of Cortical Inhibitory Synapses

Yoshiyuki Kubota; Fuyuki Karube; Masaki Nomura; Yasuo Kawaguchi

The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their inhibitory postsynaptic potential (IPSP) size is not uniform. Thus, cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.


eLife | 2015

Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons

Yoshiyuki Kubota; Satoru Kondo; Masaki Nomura; Sayuri Hatada; Noboru Yamaguchi; Alsayed Abdelhamid Mohamed; Fuyuki Karube; Joachim H. R. Lübke; Yasuo Kawaguchi

Inhibitory interneurons target precise membrane regions on pyramidal cells, but differences in their functional effects on somata, dendrites and spines remain unclear. We analyzed inhibitory synaptic events induced by cortical, fast-spiking (FS) basket cells which innervate dendritic shafts and spines as well as pyramidal cell somata. Serial electron micrograph (EMg) reconstructions showed that somatic synapses were larger than dendritic contacts. Simulations with precise anatomical and physiological data reveal functional differences between different innervation styles. FS cell soma-targeting synapses initiate a strong, global inhibition, those on shafts inhibit more restricted dendritic zones, while synapses on spines may mediate a strictly local veto. Thus, FS cell synapses of different sizes and sites provide functionally diverse forms of pyramidal cell inhibition. DOI: http://dx.doi.org/10.7554/eLife.07919.001


Journal of Physiological Sciences | 2016

Neuronal circuits and physiological roles of the basal ganglia in terms of transmitters, receptors and related disorders

Katsuya Yamada; Susumu Takahashi; Fuyuki Karube; Fumino Fujiyama; Kazuto Kobayashi; Akinori Nishi; Toshihiko Momiyama

The authors have reviewed recent research advances in basal ganglia circuitry and function, as well as in related disorders from multidisciplinary perspectives derived from the results of morphological, electrophysiological, behavioral, biochemical and molecular biological studies. Based on their expertise in their respective fields, as denoted in the text, the authors discuss five distinct research topics, as follows: (1) area-specific dopamine receptor expression of astrocytes in basal ganglia, (2) the role of physiologically released dopamine in the striatum, (3) control of behavioral flexibility by striatal cholinergic interneurons, (4) regulation of phosphorylation states of DARPP-32 by protein phosphatases and (5) physiological perspective on deep brain stimulation with optogenetics and closed-loop control for ameliorating parkinsonism.


The Journal of Neuroscience | 2018

Perineuronal nets in the deep cerebellar nuclei regulate GABAergic transmission and delay eyeblink conditioning

Moritoshi Hirono; Satoshi Watanabe; Fuyuki Karube; Fumino Fujiyama; Shigenori Kawahara; Soichi Nagao; Yuchio Yanagawa; Hiroaki Misonou

Perineuronal nets (PNNs), composed mainly of chondroitin sulfate proteoglycans, are the extracellular matrix that surrounds cell bodies, proximal dendrites, and axon initial segments of adult CNS neurons. PNNs are known to regulate neuronal plasticity, although their physiological roles in cerebellar functions have yet to be elucidated. Here, we investigated the contribution of PNNs to GABAergic transmission from cerebellar Purkinje cells (PCs) to large glutamatergic neurons in the deep cerebellar nuclei (DCN) in male mice by recording IPSCs from cerebellar slices, in which PNNs were depleted with chondroitinase ABC (ChABC). We found that PNN depletion increased the amplitude of evoked IPSCs and enhanced the paired-pulse depression. ChABC treatment also facilitated spontaneous IPSCs and increased the miniature IPSC frequency without changing not only the amplitude but also the density of PC terminals, suggesting that PNN depletion enhances presynaptic GABA release. We also demonstrated that the enhanced GABAergic transmission facilitated rebound firing in large glutamatergic DCN neurons, which is expected to result in the efficient induction of synaptic plasticity at synapses onto DCN neurons. Furthermore, we tested whether PNN depletion affects cerebellar motor learning. Mice having received the enzyme into the interpositus nuclei, which are responsible for delay eyeblink conditioning, exhibited the conditioned response at a significantly higher rate than control mice. Therefore, our results suggest that PNNs of the DCN suppress GABAergic transmission between PCs and large glutamatergic DCN neurons and restrict synaptic plasticity associated with motor learning in the adult cerebellum. SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are one of the extracellular matrices of adult CNS neurons and implicated in regulating various brain functions. Here we found that enzymatic PNN depletion in the mouse deep cerebellar nuclei (DCN) reduced the paired-pulse ratio of IPSCs and increased the miniature IPSC frequency without changing the amplitude, suggesting that PNN depletion enhances GABA release from the presynaptic Purkinje cell (PC) terminals. Mice having received the enzyme in the interpositus nuclei exhibited a higher conditioned response rate in delay eyeblink conditioning than control mice. These results suggest that PNNs regulate presynaptic functions of PC terminals in the DCN and functional plasticity of synapses on DCN neurons, which influences the flexibility of adult cerebellar functions.

Collaboration


Dive into the Fuyuki Karube's collaboration.

Top Co-Authors

Avatar

Yasuo Kawaguchi

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Yoshiyuki Kubota

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuharu Hirai

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mieko Morishima

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge