Fuyuko Takata
Fukuoka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fuyuko Takata.
Brain Research | 2005
Shinya Dohgu; Fuyuko Takata; Atsushi Yamauchi; Shinsuke Nakagawa; Takashi Egawa; Mikihiko Naito; Takashi Tsuruo; Yasufumi Sawada; Masami Niwa; Yasufumi Kataoka
The blood-brain barrier (BBB) is a highly organized multicellular complex consisting of an endothelium, brain pericytes and astrocytes. The present study was aimed at evaluating the role of brain pericytes in the induction and maintenance of BBB functions and involvement of transforming growth factor-beta (TGF-beta) in the functional properties of pericytes. We used an in vitro BBB model established by coculturing immortalized mouse brain capillary endothelial (MBEC4) cells with a primary culture of rat brain pericytes. The coculture with rat pericytes significantly decreased the permeability to sodium fluorescein and the accumulation of rhodamine 123 in MBEC4 cells, suggesting that brain pericytes induce and up-regulate the BBB functions. Rat brain pericytes expressed TGF-beta1 mRNA. The pericyte-induced enhancement of BBB functions was significantly inhibited when cells were treated with anti-TGF-beta1 antibody (10 microg/ml) or a TGF-beta type I receptor antagonist (SB431542) (10 microM) for 12 h. In MBEC4 monolayers, a 12 h exposure to TGF-beta1 (1 ng/ml) significantly facilitated the BBB functions, this facilitation being blocked by SB431542. These findings suggest that brain pericytes contribute to the up-regulation of BBB functions through continuous TGF-beta production.
Journal of Neuroinflammation | 2011
Fuyuko Takata; Shinya Dohgu; Junichi Matsumoto; Hiroyuki Takahashi; Takashi Machida; Tomoya Wakigawa; Eriko Harada; Haruki Miyaji; Mitsuhisa Koga; Tsuyoshi Nishioku; Atsushi Yamauchi; Yasufumi Kataoka
BackgroundIncreased matrix metalloproteinase (MMP)-9 in the plasma and brain is associated with blood-brain barrier (BBB) disruption through proteolytic activity in neuroinflammatory diseases. MMP-9 is present in the brain microvasculature and its vicinity, where brain microvascular endothelial cells (BMECs), pericytes and astrocytes constitute the BBB. Little is known about the cellular source and role of MMP-9 at the BBB. Here, we examined the ability of pericytes to release MMP-9 and migrate in response to inflammatory mediators in comparison with BMECs and astrocytes, using primary cultures isolated from rat brains.MethodsThe culture supernatants were collected from primary cultures of rat brain endothelial cells, pericytes, or astrocytes. MMP-9 activities and levels in the supernatants were measured by gelatin zymography and western blot, respectively. The involvement of signaling molecules including mitogen-activated protein kinases (MAPKs) and phosphoinositide-3-kinase (PI3K)/Akt in the mediation of tumor necrosis factor (TNF)-α-induced MMP-9 release was examined using specific inhibitors. The functional activity of MMP-9 was evaluated by a cell migration assay.ResultsZymographic and western blot analyses demonstrated that TNF-α stimulated pericytes to release MMP-9, and this release was much higher than from BMECs or astrocytes. Other inflammatory mediators [interleukin (IL)-1β, interferon-γ, IL-6 and lipopolysaccharide] failed to induce MMP-9 release from pericytes. TNF-α-induced MMP-9 release from pericytes was found to be mediated by MAPKs and PI3K. Scratch wound healing assay showed that in contrast to BMECs and astrocytes the extent of pericyte migration was significantly increased by TNF-α. This pericyte migration was inhibited by anti-MMP-9 antibody.ConclusionThese findings suggest that pericytes are most sensitive to TNF-α in terms of MMP-9 release, and are the major source of MMP-9 at the BBB. This pericyte-derived MMP-9 initiated cellular migration of pericytes, which might be involved in pericyte loss in the damaged BBB.
Cellular and Molecular Neurobiology | 2004
Shinya Dohgu; Atsushi Yamauchi; Fuyuko Takata; Mikihiko Naito; Takashi Tsuruo; Shun Higuchi; Yasufumi Sawada; Yasufumi Kataoka
Abstract1. The present study was aimed at elucidating effects of transforming growth factor-β (TGF-β) on blood–brain barrier (BBB) functions with mouse brain capillary endothelial (MBEC4) cells.2. The permeability coefficients of sodium fluorescein and Evans blue albumin for MBEC4 cells and the cellular accumulation of rhodamine 123 in MBEC4 cells were dose-dependently decreased after a 12-h exposure to TGF-β1 (0.01–10 ng/mL).3. The present study demonstrates that TGF-β lowers the endothelial permeability and enhances the functional activity of P-gp, suggesting that cellular constituents producing TGF-β in the brain may keep the BBB functioning.
Neuroscience Letters | 2014
Junichi Matsumoto; Fuyuko Takata; Takashi Machida; Hiroyuki Takahashi; Yuki Soejima; Miho Funakoshi; Koujiro Futagami; Atsushi Yamauchi; Shinya Dohgu; Yasufumi Kataoka
Brain pericytes are involved in neurovascular dysfunction, neurodegeneration and/or neuroinflammation. In the present study, we focused on the proinflammatory properties of brain pericytes to understand their participation in the induction of inflammation at the neurovascular unit (NVU). The NVU comprises different cell types, namely, brain microvascular endothelial cells, pericytes, astrocytes and microglia. Among these, we found pericytes to be the most sensitive to tumor necrosis factor (TNF)-α, possessing a unique cytokine and chemokine release profile. This was characterized by marked release of interleukin (IL)-6 and macrophage inflammatory protein-1α. Furthermore, TNF-α-stimulated pericytes induced expression of inducible nitric oxide synthase and IL-1β mRNAs, as an index of BV-2 microglial cell activation state, to the highest levels. Based on these findings, the possibility that brain pericytes act specifically as TNF-α-sensitive cells and as effectors of TNF-α through the release of proinflammatory factors, and that, as such, they have a role in inducing brain inflammation, should be considered.
PLOS ONE | 2013
Fuyuko Takata; Shinya Dohgu; Atsushi Yamauchi; Junichi Matsumoto; Takashi Machida; Kayoko Fujishita; Keisuke Shibata; Youichi Shinozaki; Kaoru Sato; Yasufumi Kataoka; Schuichi Koizumi
The blood–brain barrier (BBB) restricts the entry of circulating drugs and xenobiotics into the brain, and thus its permeability to substances is a critical factor that determines their central effects. The infant brain is vulnerable to neurotoxic substances partly due to the immature BBB. The employment of in vitro BBB models to evaluate permeability of compounds provides higher throughput than that of in vivo animal experiments. However, existing in vitro BBB models have not been able to simulate the intrinsic neonatal BBB. To establish a neonatal BBB model that mimics age-related BBB properties, the neonatal and adult in vitro BBB models were constructed with brain endothelial cells isolated from 2- and 8-week-old rats, respectively. To evaluate BBB functions, transendothelial electrical resistance, permeability of sodium fluorescein and Evans blue-albumin, and transport of rhodamine123 were measured. Radiolabelled drugs were used for BBB permeability studies in the neonatal and adult BBB models (in vitro) and in age-matched rats (in vivo). The neonatal BBB model showed lower barrier and p-glycoprotein (P-gp) functions than the adult BBB model; these were well associated with lower expressions of the barrier-related proteins and P-gp, and a different distribution pattern of immunostained barrier-related proteins. Verapamil (a P-gp inhibitor) significantly increased the influx of rhodamine 123, supporting functional P-gp expression in the neonatal BBB model. Valproic acid, but not nicotine, showed higher BBB permeability in the neonatal BBB model, which was well in accordance with the in vivo BBB property. We established a neonatal BBB model in vitro. This could allow us to assess the age-dependent BBB permeability of drugs.
European Journal of Pharmacology | 2010
Shinya Dohgu; Noriko Sumi; Tsuyoshi Nishioku; Fuyuko Takata; Takuya Watanabe; Mikihiko Naito; Hideki Shuto; Atsushi Yamauchi; Yasufumi Kataoka
Cyclosporin A, a potent immunosuppressant, can often produce neurotoxicity in patients, although its penetration into the brain is restricted by the blood-brain barrier (BBB). Brain pericytes and astrocytes, which are periendothelial accessory structures of the BBB, can be involved in cyclosporin A-induced BBB disruption. However, the mechanism by which cyclosporin A causes BBB dysfunction remains unknown. Here, we show that in rodent brain endothelial cells, cyclosporin A decreased transendothelial electrical resistance (TEER) by inhibiting intracellular signal transduction downstream of adrenomedullin, an autocrine regulator of BBB function. Cyclosporin A stimulated adrenomedullin release from brain endothelial cells, but did not affect binding of adrenomedullin to its receptors. This cyclosporin A-induced decrease in TEER was attenuated by exogenous addition of adrenomedullin. Cyclosporin A dose-dependently decreased the total cAMP concentration in brain endothelial cells. A combination of cyclosporin A (1microM) with an adenylyl cyclase inhibitor, 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536; 10microM), or a protein kinase A (PKA) inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89; 1microM), markedly increased sodium fluorescein permeability in brain endothelial cells, whereas each drug alone had no effect. Thus, these data suggest that cyclosporin A inhibits the adenylyl cyclase/cyclic AMP/PKA signaling pathway activated by adrenomedullin, leading to impairment of brain endothelial barrier function.
Neuroscience Letters | 2009
Fuyuko Takata; Shinya Dohgu; Tsuyoshi Nishioku; Hiroyuki Takahashi; Eriko Harada; Ikuko Makino; Manabu Nakashima; Atsushi Yamauchi; Yasufumi Kataoka
Brain pericytes are known to embrace the abluminal endothelial surfaces of cerebral microvessels. The rich expression of contractile proteins in these cells suggests pericytal regulation of cerebral blood flow. Here, we investigated the molecular mechanisms by which an endothelium-derived relaxing factor, adrenomedullin, was able to induce the relaxation of rat primary cultured brain pericytes. Adrenomedullin increased the relative proportion of pericytes that were relaxed, as shown by an increased cell surface area. A smaller fragment of adrenomedullin (adrenomedullin(22-52)) blocked the adrenomedullin-induced relaxation. Adrenomedullin increased intracellular cAMP concentrations and decreased the phosphorylation of myosin light chain (MLC). H89 (a PKA inhibitor) inhibited the adrenomedullin-induced increase in the number of relaxed pericytes, and returned the level of phosphorylation of MLC to the control level. The results of the present study suggest that adrenomedullin-induced relaxation of brain pericytes is related to the reduced phosphorylation of MLC through cAMP/PKA.
Microvascular Research | 2011
Shinya Dohgu; Fuyuko Takata; Junichi Matsumoto; Masatoshi Oda; Eriko Harada; Takuya Watanabe; Tsuyoshi Nishioku; Hideki Shuto; Atsushi Yamauchi; Yasufumi Kataoka
The blood-brain barrier (BBB) is the interface that separates the central nervous system (CNS) from the peripheral circulation. An increase in blood-borne substances including cytokines in plasma and brain affects BBB function, and this is associated with the development of pathogenesis of a number of diseases. Plasminogen activator inhibitor (PAI)-1 regulates the plasminogen activator/plasmin system as a serpin in the periphery and the CNS. We investigated whether PAI-1 alters BBB function using in vitro models of the BBB consisting of rat primary brain endothelial cells (RBECs) alone and co-cultured with pericytes. We found that PAI-1 increased the tightness of the brain endothelial barrier in a time- and dose-dependent manner, as shown by an increase in the transendothelial electrical resistance (TEER) and a decrease in the permeability to sodium fluorescein (Na-F). RBECs responded equally to PAI-1 in the blood-facing and brain-facing sides of the brain, leading to a decrease in Na-F permeability. In addition, RBECs constitutively released PAI-1 into the blood-facing (luminal) and brain-facing (abluminal) sides. This release was polarized in favor of the luminal side and facilitated by serum. The neutralization of PAI-1 by an antibody to PAI-1 in RBEC/pericyte co-culture more robustly reduced TEER of RBECs than in RBEC monolayers. These findings suggest that PAI-1 derived from the neurovascular unit and peripheral vascular system participates as a positive regulator of the BBB in facilitating the barrier function of the endothelial tight junctions.
Biochemical and Biophysical Research Communications | 2013
Fuyuko Takata; Shinya Dohgu; Junichi Matsumoto; Takashi Machida; Shuji Kaneshima; Mai Matsuo; Shinya Sakaguchi; Yuki Takeshige; Atsushi Yamauchi; Yasufumi Kataoka
Blood-brain barrier (BBB) disruption occurs frequently in CNS diseases and injuries. Few drugs have been developed as therapeutic candidates for facilitating BBB functions. Here, we examined whether metformin up-regulates BBB functions using rat brain microvascular endothelial cells (RBECs). Metformin, concentration- and time-dependently increased transendothelial electrical resistance of RBEC monolayers, and decreased RBEC permeability to sodium fluorescein and Evans blue albumin. These effects of metformin were blocked by compound C, an inhibitor of AMP-activated protein kinase (AMPK). AMPK stimulation with an AMPK activator, AICAR, enhanced BBB functions. These findings indicate that metformin induces up-regulation of BBB functions via AMPK activation.
Neuroscience Letters | 2008
Fuyuko Takata; Noriko Sumi; Tsuyoshi Nishioku; Eriko Harada; Tomoya Wakigawa; Hideki Shuto; Atsushi Yamauchi; Yasufumi Kataoka
Oncostatin M (OSM), a member of the interleukin-6 family, is produced by monocytes and macrophages in the peripheral blood and microglia in the brain. The present study aimed to elucidate a regulatory role of OSM in the functions of blood-brain barrier (BBB) comprised of rat brain capillary endothelial cells (RBECs). OSM decreased the transendothelial electrical resistance of RBEC monolayers in a concentration- and time-dependent manner. Immunocytochemical observations of ZO-1 and claudin-5 in OSM-treated RBECs showed a zipper-like and/or zigzag shape along the junctions between cells, in contrast with the smooth and linear shape in vehicle-treated cultures. When RBECs were pre-treated with anti-OSM antibody, OSM failed to evoke these changes. The cellular constituents producing OSM in the brain and peripheral blood could be implicated in the functional and structural impairment of the BBB.