Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fwu Long Mi is active.

Publication


Featured researches published by Fwu Long Mi.


Carbohydrate Polymers | 2015

Combination of carboxymethyl chitosan-coated magnetic nanoparticles and chitosan-citrate complex gel beads as a novel magnetic adsorbent

Fwu Long Mi; Shao Jung Wu; Yung Chih Chen

Magnetic chitosan beads were synthesized by incorporating N,O-carboxymethyl chitosan-coated magnetic nanoparticles (NOCC-MNPs) into chitosan-citrate gel beads (CCGBs) for adsorbing Cu(II) ions. An increase of Cu(II) adsorption capacity was due to the combined chelation effects from the electron-donating functional groups in the CCGBs and NOCC-MNPs. Moreover, the paramagnetic susceptibility of Cu(II) citrate chelates could further improve the Cu(II) adsorption efficiency through the force of magnetic attraction. The adsorption data of the magnetic CCGBs fitted well with the Freundlich model, whereas the adsorption kinetics followed the pseudo-second-order kinetic model. The maximal adsorption capacity as estimated by the Langmuir model was 294.11mg/g. The adsorption thermodynamic parameters indicated that the involved process should be spontaneous and exothermic.


Carbohydrate Polymers | 2015

Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application.

Shu Huei Yu; Shao Jung Wu; Jui Yu Wu; De Yu Wen; Fwu Long Mi

In this study, a fucoidan-shelled chitosan bead was developed with the purpose of oral delivery of berberine to inhibit the growth of bacteria. The cross-linking level and swelling property of the beads were affected by the pH value and the composition of the genipin/fucoidan combined gelling agent. The drug release of the berberine-loaded beads was faster in simulated gastric fluid (pH 1.2) than those in simulated intestinal fluid (pH 7.4). Furthermore, a nanoparticles/beads complex system was developed by incorporation of berberine-loaded chitosan/fucoidan nanoparticles in the fucoidan-shelled chitosan beads. The nanoparticles/beads complex served as a drug carrier to delay the berberine release in simulated gastric fluid, with an estimated lag time of 2 h. Our results showed that the berberine-loaded beads and nanoparticles/beads complex could effectively inhibit the growth inhibition of common clinical pathogens, such as Staphylococcus aureus and Escherichia coli, and have the advantage of continually releasing berberine to inhibit the growth of the bacteria over 24 h.


Carbohydrate Polymers | 2017

Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery

Kun Ying Lu; Rou Li; Chun-Hua Hsu; Cheng Wei Lin; Shen Chieh Chou; Min Lang Tsai; Fwu Long Mi

Fucoidan, a sulfated marine polysaccharide, has many potential biological functions, including anticancer activity. Recently, fucoidan has been reported to target P-selectin expressed on metastatic cancer cells. Increasing research attention has been devoted to the developments of fucoidan-based nanomedicine. However, the application of traditional chitosan/fucoidan nanoparticles in anticancer drug delivery may be limited due to the deprotonation of chitosan at a pH greater than 6.5. In this study, a mutli-stimuli-responsive nanoparticle self-assembled by fucoidan and a cationic polypeptide (protamine) was developed, and their pH-/enzyme-responsive properties were characterized by circular dichroism (CD) spectroscopy, dynamic light scattering (DLS), and zeta potential analysis. Enzymatic digestion and acidic intracellular microenvironment (pH 4.5-5.5) in cancer cells triggered the release of an anticancer drug (doxorubicin) from the nanoparticles. The protamine/fucoidan complex nanoparticles with P-selectin mediated endocytosis, charge conversion and stimuli-tunable release properties showed an improved inhibitory effect against a metastatic breast cancer cell line (MDA-MB-231).


ACS Applied Materials & Interfaces | 2014

FRET-based dual-emission and pH-responsive nanocarriers for enhanced delivery of protein across intestinal epithelial cell barrier

Kun Ying Lu; Cheng Wei Lin; Chun-Hua Hsu; Yi Cheng Ho; Er-Tuan Chuang; Hsing-Wen Sung; Fwu Long Mi

The oral route is a convenient and commonly employed way for drug delivery. However, therapeutic proteins have poor bioavailability upon oral administration due to the impermeable barrier from intestinal epithelial tight junction (TJ). Moreover, the pH of the small intestine varies among different regions of the intestinal tract where digestion and absorption occur at different levels. In this study, a tunable dual-emitting and pH-responsive nanocarrier that can alter the fluorescent color and emission intensity in response to pH changes and can trigger the opening of intestinal epithelial TJ at different levels were developed from chitosan-N-arginine and poly(γ-glutamic acid)-taurine conjugates. As pH increased from 6.0 to 8.0, the binding affinity of the oppositely charged polyions decreased, whereas the ratio of the intensity of the donor-to-acceptor emission intensity (ID/IA) increased by 27-fold. The fluorescent and pH-responsive nanocarrier was able to monitor the pH change of intestinal environment and to control the release of an anti-angiogenic protein in response to the pH gradient. The nanocarrier triggered the opening of intestinal epithelial TJ and consequently enhanced the permeation of the released protein through the intestinal epithelial barrier model (Caco-2 cell monolayer) to inhibit tube formation of human umbilical vein endothelial cells.


Journal of Agricultural and Food Chemistry | 2017

Antroquinonol, a Ubiquinone Derivative from the Mushroom Antrodia camphorata, Inhibits Colon Cancer Stem Cell-like Properties: Insights into the Molecular Mechanism and Inhibitory Targets

Hsien Chun Lin; Mei Hsiang Lin; Jiahn Haur Liao; Tzu Hua Wu; Tzong-Huei Lee; Fwu Long Mi; Chi Hao Wu; Ku Chung Chen; Chia Hsiung Cheng; Cheng Wei Lin

Antroquinonol (ANQ) is a ubiquinone derivative from the unique mushroom Antrodia camphorata, which exhibits broad-spectrum bioactivities. The effects of ANQ on cancer stem cell-like properties in colon cancer, however, remain unclear. In this study, we found that ANQ inhibited growth of colon cancer cells. The 50% growth inhibitions (GI50) of ANQ on HCT15 and LoVo were 34.8 ± 0.07 and 17.9 ± 0.07 μM. Moreover, ANQ exhibited inhibitory activities toward migration/invasion and tumorsphere formation of colon cancer cells. Mechanistically, ANQ inhibited pluripotent and cancer stem cell-related genes and down-regulated β-catenin/T-cell factor (TCF) signaling. Moreover, activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/β-catenin signaling axis was identified to be crucial for regulating the expressions of pluripotent genes, whereas suppression of PI3K/AKT by ANQ inhibited expressions of β-catenin and downstream targets. Molecular docking identified the potential interaction of ANQ with PI3K. Our data show for the first time that the bioactive component of A.xa0camphorata, ANQ, suppresses stem cell-like properties via targeting PI3K/AKT/β-catenin signaling. ANQ could be a promising cancer prevention agent for colon cancer.


ACS Applied Materials & Interfaces | 2017

Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe2O4 Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells

Kuan Ting Lee; Yu Jen Lu; Fwu Long Mi; Thierry Burnouf; Yi Ting Wei; Shao Chieh Chiu; Er Yuan Chuang; Shih Yuan Lu

Heterogeneous Fenton reactions have been proven to be an effective and promising selective cancer cell treatment method. The key working mechanism for this method to achieve the critical therapeutic selectivity however remains unclear. In this study, we proposed and demonstrated for the first time the critical role played by catalase in realizing the therapeutic selectivity for the heterogeneous Fenton reaction-driven cancer cell treatment. The heterogeneous Fenton reaction, with the lattice ferric ions of the solid catalyst capable of converting H2O2 to highly reactive hydroxyl radicals, can effectively eradicate cancer cells. In this study, SnFe2O4 nanocrystals, a recently discovered outstanding heterogeneous Fenton catalyst, were applied for selective killing of lung cancer cells. The SnFe2O4 nanocrystals, internalized into the cancer cells, can effectively convert endogenous H2O2 into highly reactive hydroxyl radicals to invoke an intensive cytotoxic effect on the cancer cells. On the other hand, catalase, present at a significantly higher concentration in normal cells than in cancer cells, remarkably can impede the apoptotic cell death induced by the internalized SnFe2O4 nanocrystals. According to the results obtained from the in vitro cytotoxicity study, the relevant oxidative attacks were effectively suppressed by the presence of normal physiological levels of catalase. The SnFe2O4 nanocrystals were thus proved to effect apoptotic cancer cell death through the heterogeneous Fenton reaction and were benign to cells possessing normal physiological levels of catalase. The catalase modulation of the involved heterogeneous Fenton reaction plays the key role in achieving selective cancer cell eradication for the heterogeneous Fenton reaction-driven cancer cell treatment.


Journal of Agricultural and Food Chemistry | 2015

Effect of Grape Seed Proanthocyanidin–Gelatin Colloidal Complexes on Stability and in Vitro Digestion of Fish Oil Emulsions

Yu Ru Su; Yi Chin Tsai; Chun-Hua Hsu; An Chong Chao; Cheng Wei Lin; Min Lang Tsai; Fwu Long Mi

The colloidal complexes composed of grape seed proanthocyanidin (GSP) and gelatin (GLT), as natural antioxidants to improve stability and inhibit lipid oxidation in menhaden fish oil emulsions, were evaluated. The interactions between GSP and GLT, and the chemical structures of GSP/GLT self-assembled colloidal complexes, were characterized by isothermal titration calorimetry (ITC), circular dichroism (CD), and Fourier transform infrared spectroscopic (FTIR) studies. Fish oil was emulsified with GLT to obtain an oil-in-water (o/w) emulsion. After formation of the emulsion, GLT was fixed by GSP to obtain the GSP/GLT colloidal complexes stabilized fish oil emulsion. Menhaden oil emulsified by GSP/GLT(0.4 wt %) colloidal complexes yielded an emulsion with smaller particles and higher emulsion stability as compared to its GLT emulsified counterpart. The GSP/GLT colloidal complexes inhibited the lipid oxidation in fish oil emulsions more effectively than free GLT because the emulsified fish oil was surrounded by the antioxidant GSP/GLT colloidal complexes. The digestion rate of the fish oil emulsified with the GSP/GLT colloidal complexes was reduced as compared to that emulsified with free GLT. The extent of free fatty acids released from the GSP/GLT complexes stabilized fish oil emulsions was 63.3% under simulated digestion condition, indicating that the fish oil emulsion was considerably hydrolyzed with lipase.


Carbohydrate Polymers | 2018

Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films

Yi Hsuan Tsai; Yu Ning Yang; Yi Cheng Ho; Min Lang Tsai; Fwu Long Mi

Bacterial cellulose (BC) is a biopolymer composed of nanofibers which has excellent film-forming ability. However, BC do not have antibacterial or antioxidant activity, thus limiting the applicability of BC for food and biomedical applications. In this study, flavonoid silymarin (SMN) and zein were assembled into spherical SMN-Zein nanoparticles that could be effectively adsorbed onto BC nanofibers. SMN-Zein nanoparticles greatly changed the wettability and swelling property of BC films due to the formation of nanoparticles/nanofibers nanocomposites. SMN-Zein nanoparticles enhanced the release of sparingly soluble silymarin from the nanocomposite films. The active films showed more effective antioxidant and antibacterial activities as compared with pure BC films and thus were able to protect salmon muscle from deterioration and lipid oxidation. These findings suggest that the nanoparticle/nanofiber composites may offer a suitable platform for modification of BC films with improved drug release properties and biological activities.


ACS Applied Materials & Interfaces | 2017

H2O2-Depleting and O2-Generating Selenium Nanoparticles for Fluorescence Imaging and Photodynamic Treatment of Proinflammatory-Activated Macrophages

Kun Ying Lu; Po Yen Lin; Er Yuan Chuang; Chwen Ming Shih; Tsai Mu Cheng; Tsung Yao Lin; Hsing-Wen Sung; Fwu Long Mi

Macrophages have a pivotal role in chronic inflammatory diseases (CIDs), so imaging and controlling activated macrophage is critical for detecting and reducing chronic inflammation. In this study, photodynamic selenium nanoparticles (SeNPs) with photosensitive and macrophage-targeting bilayers were developed. The first layer of the photosensitive macromolecule was composed of a conjugate of a photosensitizer (rose bengal, RB) and a thiolated chitosan (chitosan-glutathione), resulting in a plasmonic coupling-induced red shift and broadening of RB absorption bands with increased absorption intensity. Electron paramagnetic resonance (EPR) and diphenylanthracene (DPA) quenching studies revealed that the SeNPs that were coated with the photosensitive layer were more effective than RB alone in producing singlet oxygen (1O2) under photoirradiation. The second layer of the activated macrophage-targetable macromolecule was synthesized by conjugation of hyaluronic acid with folic acid using an ethylenediamine linker. Proinflammatory-activated macrophages rapidly internalized the SeNPs that were covered with the targeting ligand, exhibiting a much stronger fluorescence signal of the SeNPs than did the nonactivated macrophages. Since proinflammatory-activated macrophage was known to generate a substantial amount of H2O2 while the inflamed site generally caused inflammation-associated tissue hypoxia, the SeNPs were further modified with O2 self-sufficient function for photodynamic therapy. Catalase was immobilized on the SeNPs by the formation of disulfide bonds. Intracellular reduction of disulfide bonds induced the subsequent release of catalase, which catalyzed the decomposition of H2O2. The H2O2-depleting and O2-generating photodynamic SeNPs efficiently killed activated macrophages and quenched the intracellular H2O2 and NO that are associated with inflammation. The SeNPs may have potential as a theranostic nanomaterial to image and control the activation of macrophages.


Molecular Pharmaceutics | 2017

Temperature/pH/Enzyme Triple-Responsive Cationic Protein/PAA-b-PNIPAAm Nanogels for Controlled Anticancer Drug and Photosensitizer Delivery against Multidrug Resistant Breast Cancer Cells

Trong Ming Don; Kun Ying Lu; Li Jie Lin; Chun-Hua Hsu; Jui Yu Wu; Fwu Long Mi

The tumor microenvironments are often acidic and overexpress specific enzymes. In this work, we synthesized a poly(AA-b-NIPAAm) copolymer (PAA-b-PNIPAAm) using a reversible addition-fragmentation chain transfer (RAFT) polymerization method. PAA-b-PNIPAAm and a cationic protein (protamine) were self-assembled into nanogels, which effectively reduced the cytotoxicity of protamine. The protamine/PAA-b-PNIPAAm nanogels were responsive to the stimuli including temperature, pH, and enzyme due to disaggregation of PAA-b-PNIPAAm, change in random coil/α-helix conformation of protamine, and enzymatic hydrolysis of the protein. Changing the pH from 7.4 to a lowered pHe (6.5-5.0) resulted in an increase in mean particle size and smartly converted surface charge from negative to positive. The cationic nanogels easily passed through the cell membrane and enhanced intracellular localization and accumulation of doxorubicin-loaded nanogels in multidrug resistant MCF-7/ADR breast cancer cells. Cold shock treatment triggered rapid intracellular release of doxorubicin against P-glycoprotein (Pgp)-mediated drug efflux, showing significantly improved anticancer efficacy as compared with free DOX. Furthermore, the nanogels were able to carry a rose bengal photosensitizer and caused significant damage to the multidrug resistant cancer cells under irradiation. The cationic nanogels with stimuli-responsive properties show promise as drug carrier for chemotherapy and photodynamic therapy against cancers.

Collaboration


Dive into the Fwu Long Mi's collaboration.

Top Co-Authors

Avatar

Min Lang Tsai

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar

Kun Ying Lu

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Cheng Wei Lin

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar

Chun-Hua Hsu

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Er Yuan Chuang

Taipei Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hsing-Wen Sung

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar

Shao Jung Wu

Ming Chi University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge