G.A. Broderick
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G.A. Broderick.
Journal of Dairy Science | 2011
M.J. Aguerre; M.A. Wattiaux; J. M. Powell; G.A. Broderick; C. Arndt
Holstein cows housed in a modified tie-stall barn were used to determine the effect of feeding diets with different forage-to-concentrate ratios (F:C) on performance and emission of CH(4), CO(2) and manure NH(3)-N. Eight multiparous cows (means ± standard deviation): 620 ± 68 kg of body weight; 52 ± 34 d in milk and 8 primiparous cows (546 ± 38 kg of body weight; 93 ± 39 d in milk) were randomly assigned to 1 of 4 air-flow controlled chambers, constructed to fit 4 cows each. Chambers were assigned to dietary treatment sequences in a single 4 × 4 Latin square design. Dietary treatments, fed as 16.2% crude protein total mixed rations included the following F:C ratio: 47:53, 54:46, 61:39, and 68:32 [diet dry matter (DM) basis]. Forage consisted of alfalfa silage and corn silage in a 1:1 ratio. Cow performance and emission data were measured on the last 7 d and the last 4 d, respectively of each 21-d period. Air samples entering and exiting each chamber were analyzed with a photo-acoustic field gas monitor. In a companion study, fermentation pattern was studied in 8 rumen-cannulated cows. Increasing F:C ratio in the diet had no effect on DM intake (21.1 ± 1.5 kg/d), energy-corrected milk (ECM, 37.4 ± 2.2 kg/d), ECM/DM intake (1.81 ± 0.18), yield of milk fat, and manure excretion and composition; however, it increased milk fat content linearly by 7% and decreased linearly true protein, lactose, and solids-not-fat content (by 4, 1, and 2%, respectively) and yield (by 10, 6, and 6%, respectively), and milk N-to-N intake ratio. On average 93% of the N consumed by the cows in the chambers was accounted for as milk N, manure N, or emitted NH(3)-N. Increasing the F:C ratio also increased ruminal pH linearly and affected concentrations of butyrate and isovalerate quadratically. Increasing the F:C ratio from 47:53 to 68:32 increased CH(4) emission from 538 to 648 g/cow per day, but had no effect on manure NH(3)-N emission (14.1 ± 3.9 g/cow per day) and CO(2) emission (18,325 ± 2,241 g/cow per day). In this trial, CH(4) emission remained constant per unit of neutral detergent fiber intake (1g of CH(4) was emitted for every 10.3g of neutral detergent fiber consumed by the cow), but increased from 14.4 to 18.0 g/kg of ECM when the percentage of forage in the diet increased from 47 to 68%. Although the pattern of emission within a day was distinct for each gas, emissions were higher between morning feeding (0930 h) and afternoon milking (1600 h) than later in the day. Altering the level of forage within a practical range and rebalancing dietary crude protein with common feeds of the Midwest of the United States had no effects on manure NH(3)-N emission but altered CH(4) emission.
Journal of Dairy Science | 2008
G.A. Broderick; N.D. Luchini; S.M. Reynal; G.A. Varga; V.A. Ishler
Replacing dietary starch with sugar has been reported to improve production in dairy cows. Two sets of 24 Holstein cows averaging 41 kg/d of milk were fed a covariate diet, blocked by days in milk, and randomly assigned in 2 phases to 4 groups of 6 cows each. Cows were fed experimental diets containing [dry matter (DM) basis]: 39% alfalfa silage, 21% corn silage, 21% rolled high-moisture shelled corn, 9% soybean meal, 2% fat, 1% vitamin-mineral supplement, 7.5% supplemental nonstructural carbohydrate, 16.7% crude protein, and 30% neutral detergent fiber. Nonstructural carbohydrates added to the 4 diets were 1) 7.5% corn starch, 0% sucrose; 2) 5.0% starch, 2.5% sucrose; 3) 2.5% starch, 5.0% sucrose; or 4) 0% starch, 7.5% sucrose. Cows were fed the experimental diets for 8 wk. There were linear increases in DM intake and milk fat content and yield, and linear decreases in ruminal concentrations of ammonia and branched-chain volatile fatty acids, and urinary excretion of urea-N and total N, and urinary urea-N as a proportion of total N, as sucrose replaced corn starch in the diet. Despite these changes, there was no effect of diet on microbial protein formation, estimated from total purine flow at the omasum or purine derivative excretion in the urine, and there were linear decreases in both milk/DM intake and milk N/N-intake when sucrose replaced dietary starch. However, expressing efficiency as fat-corrected milk/DM intake or solids-corrected milk/DM intake indicated that there was no effect of sucrose addition on nutrient utilization. Replacing dietary starch with sucrose increased fat secretion, apparently via increased energy supply because of greater intake. Positive responses normally correlated with improved ruminal N efficiency that were altered by sucrose feeding were not associated with increased protein secretion in this trial.
Journal of Dairy Science | 2008
G.A. Broderick; M.J. Stevenson; R.A. Patton; N.E. Lobos; J.J. Olmos Colmenero
Two 4 x 4 Latin square trials (4-wk periods; 16 wk total) were conducted to see whether supplementing rumen-protected Met (RPM; fed as Mepron) would allow feeding less crude protein (CP), thereby reducing urinary N excretion, but without losing production. In trial 1, 24 Holsteins were fed 4 diets as total mixed rations containing [dry matter (DM) basis]: 18.6% CP and 0 g of RPM/d; 17.3% CP and 5 g of RPM/d; 16.1% CP and 10 g of RPM/d; or 14.8% CP and 15 g of RPM/d. Dietary CP was reduced by replacing soybean meal with high-moisture shelled corn. All diets contained 21% alfalfa silage, 28% corn silage, 4.5% roasted soybeans, 5.8% soyhulls, 0.6% sodium bicarbonate, 0.5% vitamins and minerals, and 27% neutral detergent fiber. There was no effect of diet on intake, weight gain, or yields of protein, lactose, and solids-not-fat. However, production was greater at 17.3% CP plus RPM and 16.1% CP plus RPM than on the other 2 diets. Apparent N efficiency (milk N:N intake) was greatest on the lowest CP diet containing the most RPM. Linear reductions in milk urea N and urinary N excretion were observed with lower dietary CP. In trial 2, 32 Holsteins were fed 4 diets as total mixed rations, formulated from ingredients used in trial 1 and containing 16.1 or 17.3% CP with 0 or 10 g of RPM/d. On average, cows were calculated to be in negative N balance on all diets because of lower than expected DM intake. There was no effect of RPM supplementation on any production trait. However, higher CP gave small increases in yields of milk, protein, and solids-not-fat and tended to increase DM intake and lactose yield. Apparent N efficiency was greater, and milk urea nitrogen was lower, on 16.1% CP. In trial 1, feeding lower CP diets supplemented with RPM resulted in improved N efficiency and reduced urinary N excretion. However, in trial 2, reducing dietary CP from 17.3 to 16.1% reduced milk secretion, an effect that was not reversed by RPM supplementation at low DM intakes when cows were apparently mobilizing body protein.
Journal of Dairy Science | 2010
G.A. Broderick; Pekka Huhtanen; Seppo Ahvenjärvi; S.M. Reynal; Kevin J. Shingfield
Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates of RDP, RUP, and ruminal microbial protein supply in cattle.
Journal of Dairy Science | 2008
J. M. Powell; G.A. Broderick; T.H. Misselbrook
Federal and state regulations are being promulgated under the Clean Air Act to reduce hazardous air emissions from livestock operations. Although much is known about air emissions from livestock operations in Europe, few data are available on emissions from livestock facilities in the United States and the management practices that may minimize these emissions. The objective of this study was to measure seasonal and diet effects on ammonia emissions from experimental tie-stall dairy barns located in central Wisconsin. Four experimental chambers each housed 4 lactating Holstein dairy cows for three 28-d trial periods corresponding to spring, early fall, and winter. A 4 x 4 Latin square statistical design was used to evaluate 4 diets [corn silage (CS)- or alfalfa silage (AS)-based diets at low or high crude protein] in each chamber for a 4-d ammonia monitoring period. Partially due to higher crude protein levels, average ammonia-N emissions during spring (18.8 g/cow per d) were approximately twice the emissions recorded during early fall (8.4 g/cow per d) and 3 times greater than emissions during winter (6.7 g/cow per d). Ammonia-N emissions accounted for approximately 1 to 3% of consumed feed N, 2 to 5% of excreted manure N, and 4 to 11% of manure ammonical N. Nighttime ammonia emissions were on average 30% lower than daytime emissions. Forage type did not affect ammonia emissions during winter or early fall. Only during early spring were ammonia emissions lower from chambers containing cows fed low-CP diets than from cows fed high-CP diets. Of the total chamber N inputs (feed and bedding), 93, 91, and 95% were recovered in N outputs (milk, manure, body weight change, and ammonia N) during spring, early fall, and winter trials, respectively. Confidence in the accuracy of ammonia emission results was gained by the relatively high chamber N balances and favorable comparisons of study data with published relationships among the variables of feed N intake, milk urea N, manure N, and urine N excretion, and ammonia emissions.
Journal of Dairy Science | 2009
G.A. Broderick; M.J. Stevenson; R.A. Patton
An incomplete 8 x 8 Latin square trial (4-wk periods; 12 wk total) using 32 multiparous and 16 primiparous Holstein cows was conducted to assess the production response to crude protein (CP), digestible rumen-undegraded protein (RUP), and rumen-protected Met (RPM; fed as Mepron; Degussa Corp., Kennesaw, GA). Diets contained [dry matter (DM) basis] 21% alfalfa silage, 34% corn silage, 22 to 26% high-moisture corn, 10 to 14% soybean meal, 4% soyhulls, 2% added fat, 1.3% minerals and vitamins, and 27 to 28% neutral detergent fiber. Treatments were a 2 x 2 x 2 factorial arrangement of the following main effects: 15.8 or 17.1% dietary CP, with or without supplemental rumen-undegraded protein (RUP) from expeller soybean meal, and 0 or 9 g of RPM/d. None of the 2- or 3-way interactions was significant. Higher dietary CP increased DM intake 1.1 kg/d and yield of milk 1.7 kg/d, 3.5% fat-corrected milk (FCM) 2.2 kg/d, fat 0.10 kg/d, and true protein 0.05 kg/d, and improved apparent N balance and DM and fiber digestibility. However, milk urea N and estimated urinary excretion of urea-N and total-N also increased, and apparent N efficiency (milk-N/N-intake) fell from 33 to 30% when cows consumed higher dietary CP. Positive effects of feeding more RUP were increased feed efficiency and milk fat content plus 1.8 kg/d greater FCM and 0.08 kg/d greater fat, but milk protein content was lower and milk urea N and urinary urea excretion were elevated. Supplementation with RPM increased DM intake 0.7 kg/d and FCM and fat yield by 1.4 and 0.06 kg/d, and tended to increase milk fat content and yield of milk and protein.
Journal of Dairy Science | 2009
J. M. Powell; G.A. Broderick; J.H. Grabber; U.C. Hymes-Fecht
Forage chemistry can affect intake, digestion, milk production, and manure excretion. Although information is available on the effects of forage protein-binding polyphenols on small ruminant production and manure excretion, little information is available for dairy cattle. The objective of this study was to compare fecal and urinary N excretion of diets formulated with alfalfa (Medicago sativa L.) silage versus condensed tannin-containing birdsfoot trefoil (Lotus corniculatus) or o-quinone-containing red clover (Trifolium pratense L.) silages. Significantly higher concentrations of N were excreted in urine by lactating Holstein dairy cows fed red clover and low-tannin birdsfoot trefoil (8.2 g/L) than by cows fed high-tannin birdsfoot trefoil or alfalfa (7.1 g/L). Fecal N concentrations were similar (33.6 g/kg) among all diets. Dairy cows fed red clover had lower rates of urinary N excretion (5.0 g/h) compared with other forages (6.6 g/h). Fecal N excretion rates were lowest for red clover (4.1 g/h), intermediate for alfalfa (5.8 g/h), and greatest for cows fed high- and low-tannin birdsfoot trefoil (6.4 g/h). The ratio of fecal N to urinary N was highest for high-tannin trefoil, lowest for alfalfa and red clover, and higher in excreta collected in morning than evening. Concentrations of neutral detergent fiber (NDF) in feces, of N in NDF (NDIN) and acid detergent fiber (ADIN), and relative amounts of NDIN and ADIN excreted in feces were significantly higher from cows fed high-tannin birdsfoot trefoil than the other silage types. Study results imply that collection of excreta for environmental studies needs to consider forage polyphenol and diurnal effects on chemistry of dairy excreta.
Journal of Dairy Science | 2011
Z.H. Chen; G.A. Broderick; N.D. Luchini; B.K. Sloan; E. Devillard
Objectives of this study were to quantify production responses of lactating dairy cows to supplying absorbable Met as isopropyl-2-hydroxy-4-(methylthio)-butanoic acid (HMBi), or rumen-protected Met (RPM, Smartamine M; Adisseo, Alpharetta, GA) fed with or without 2-hydroxy-4-(methylthio)-butanoic acid (HMB), and to determine whether Met supplementation will allow the feeding of reduced dietary crude protein (CP). Seventy cows were blocked by parity and days in milk into 14 blocks and randomly assigned within blocks to 1 of the 5 dietary treatments based on alfalfa and corn silages plus high-moisture corn: 1 diet with 15.6% CP and no Met source (negative control); 3 diets with 15.6% CP plus 0.17% HMBi, 0.06% RPM + 0.10% HMB, or 0.06% RPM alone; and 1 diet with 16.8% CP and no Met supplement (positive control). Assuming that 50% of ingested HMBi was absorbed from the gastrointestinal tract and 80% of the Met in RPM was absorbed at intestine, the HMBi and RPM supplements increased metabolizable Met supply by 9 g/d and improved the Lys:Met ratio from 3.6 to 3.0. After a 2-wk covariate period during which all cows received the same diet, cows were fed test diets continuously for 12 wk. Diet did not affect dry matter intake (mean ± SD, 25.0±0.3 kg/d), body weight gain (0.59±0.2 kg/d), or milk yield (41.7±0.6 kg/d). However, feeding HMBi increased yield of energy-corrected milk and milk content of protein and solids-not-fat. Moreover, trends were observed for increased milk fat content and yield of fat and true protein on all 3 diets containing supplemental Met. Apparent N efficiency (milk N/N intake) was highest on the RPM treatment. Feeding 16.8% CP without a Met source elevated milk urea N and urinary excretion of urea N and total N and reduced apparent N efficiency from 34.5 to 30.2%, without improving production. Overall results suggested that feeding HMBi or RPM would give similar improvements in milk production and N utilization.
Journal of Dairy Science | 2009
G.A. Broderick; S.M. Reynal
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to seven 4 x 4 Latin squares in a 16-wk trial to study the effects on production and ruminal metabolism of feeding differing proportions of rumen-degraded protein (RDP) from soybean meal and urea. Diets contained [dry matter (DM) basis] 40% corn silage, 15% alfalfa silage, 28 to 30% high-moisture corn, plus varying levels of ground dry shelled corn, solvent- and lignosulfonate-treated soybean meal, and urea. Proportions of the soybean meals, urea, and dry corn were adjusted such that all diets contained 16.1% crude protein and 10.5% RDP, with urea providing 0, 1.2, 2.4, and 3.7% RDP (DM basis). As urea supplied greater proportions of RDP, there were linear decreases in DM intake, yield of milk, 3.5% fat-corrected milk, fat, protein, and solids-not-fat, and of weight gain. Milk contents of fat, protein, and solids-not-fat were not affected by source of RDP. Replacing soybean meal RDP with urea RDP resulted in several linear responses: increased excretion of urinary urea-N and concentration of milk urea-N, blood urea-N, and ruminal ammonia-N and decreased excretion of fecal N; there was also a trend for increased excretion of total urinary N. A linear increase in neutral detergent fiber (NDF) digestibility, probably due to digestion of NDF-N from lignosulfonate-treated soybean meal, was observed with greater urea intake. Omasal sampling revealed small but significant effects of N source on measured RDP supply, which averaged 11.0% (DM basis) across diets. Increasing the proportion of RDP from urea resulted in linear decrease in omasal flow of dietary nonammonia N (NAN) and microbial NAN and in microbial growth efficiency (microbial NAN/unit of organic matter truly digested in the rumen). These changes were paralleled by large linear reductions in omasal flows of essential, nonessential, and total amino acids. Overall, these results indicated that replacing soybean meal RDP with that from urea reduced yield of milk and milk components, largely because of depressed microbial protein formation in the rumen and that RDP from nonprotein-N sources was not as effective as RDP provided by true protein.
Journal of Dairy Science | 2010
Pekka Huhtanen; Seppo Ahvenjärvi; G.A. Broderick; S.M. Reynal; Kevin J. Shingfield
A data set from 32 studies (122 diets) was used to evaluate the accuracy and precision of the omasal sampling technique by investigating the relationships between ruminal and total digestion of neutral detergent fiber (NDF), between intake and apparent and true ruminal digestion of organic matter (OM), and between omasal NAN flow and milk protein yield. A mixed model regression analysis with random study effect was used to evaluate the relationships. The data were obtained when feeding North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and North European diets (n=86) comprising grass silage supplemented with barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Standard deviations of ruminal NDF and true OM digestibility were smaller than typically reported in duodenal sampling studies using only chromic oxide as a flow marker. The relationship between total and ruminal NDF digestion was consistent, indicating little variation in the proportion of total-tract NDF digestion that occurred in the rumen. Furthermore, the slope of this regression indicated that 94.7% (+/-2.7%) of total NDF digestion occurred in the rumen. The slopes of mixed model regression equations between OM intake and amount digested indicated that 42% (+/-2.4%) and 74% (+/-3.1%) of OM was apparently and truly digested in the rumen, respectively. The contribution of the rumen to total-tract apparent OM digestion was 62% (+/-2.6%). The close relationship between omasal flow of nonammonia crude protein and milk protein yield (with adjusted residual mean squared error=31 g) provided further confidence in the reliability of omasal flow measurements.