Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.A. Contreras is active.

Publication


Featured researches published by G.A. Contreras.


Animal Health Research Reviews | 2009

Metabolic factors affecting the inflammatory response of periparturient dairy cows

Lorraine M. Sordillo; G.A. Contreras; Stacey L. Aitken

Abstract Dairy cattle are susceptible to increased incidence and severity of disease during the periparturient period. Increased health disorders have been associated with alterations in bovine immune mechanisms. Many different aspects of the bovine immune system change during the periparturient period, but uncontrolled inflammation is a dominant factor in several economically important disorders such as metritis and mastitis. In human medicine, the metabolic syndrome is known to trigger several key events that can initiate and promote uncontrolled systemic inflammation. Altered lipid metabolism, increased circulating concentrations of non-esterified fatty acids and oxidative stress are significant contributing factors to systemic inflammation and the development of inflammatory-based diseases in humans. Dairy cows undergo similar metabolic adaptations during the onset of lactation, and it was postulated that some of these physiological events may negatively impact the magnitude and duration of inflammation. This review will discuss how certain types of fatty acids may promote uncontrolled inflammation either directly or through metabolism into potent lipid mediators. The relationship of increased lipid metabolism and oxidative stress to inflammatory dysfunction will be reviewed as well. Understanding more about the underlying cause of periparturient health disorders may facilitate the design of nutritional regimens that will meet the energy requirements of cows during early lactation and reduce the susceptibility to disease as a function of compromised inflammatory responses.


Journal of Dairy Science | 2010

Lipomobilization in periparturient dairy cows influences the composition of plasma nonesterified fatty acids and leukocyte phospholipid fatty acids

G.A. Contreras; N. J. O'Boyle; Thomas H. Herdt; Lorraine M. Sordillo

The periparturient period is characterized by sudden changes in metabolic and immune cell functions that predispose dairy cows to increased incidence of disease. Metabolic changes include alterations in the energy balance that lead to increased lipomobilization with consequent elevation of plasma nonesterified fatty acids (NEFA) concentrations. The objective of this study was to establish the influence of lipomobilization on fatty acid profiles within plasma lipid fractions and leukocyte phospholipid composition. Blood samples from 10 dairy cows were collected at 14 and 7 d before due date, at calving, and at 7, 14, and 30 d after calving. Total lipids and lipid fractions were extracted from plasma and peripheral blood mononuclear cells. The degree of lipomobilization was characterized by measurement of plasma NEFA concentrations. The fatty acid profile of plasma NEFA, plasma phospholipids, and leukocyte phospholipids differed from the composition of total lipids in plasma, where linoleic acid was the most common fatty acid. Around parturition and during early lactation, the proportion of palmitic acid significantly increased in the plasma NEFA and phospholipid fractions with a concomitant increase in the phospholipid fatty acid profile of leukocytes. In contrast, the phospholipid fraction of long-chain polyunsaturated fatty acids in leukocytes was diminished during the periparturient period, especially during the first 2 wk following parturition. This study showed that the composition of total plasma lipids does not necessarily reflect the NEFA and phospholipid fractions in periparturient dairy cows. These findings are significant because it is the plasma phospholipid fraction that contributes to fatty acid composition of membrane phospholipids. Increased availability of certain saturated fatty acids in the NEFA phospholipid fractions may contribute to altered leukocyte functions during the periparturient period.


Journal of Dairy Science | 2012

Nonesterified fatty acids modify inflammatory response and eicosanoid biosynthesis in bovine endothelial cells

G.A. Contreras; William Raphael; S.A. Mattmiller; J.C. Gandy; Lorraine M. Sordillo

Intense lipid mobilization during the transition period in dairy cows is associated with increased disease susceptibility. The potential impact of altered plasma nonesterified fatty acids (NEFA) concentrations and composition on host inflammatory responses that may contribute to disease incidence and severity are not known. The objective of this study was to evaluate if increased NEFA concentrations could modify vascular inflammatory responses in vitro by changing the expression of important inflammatory mediators that are important in the pathogenesis of infectious diseases of transition cows such as mastitis and metritis. Bovine aortic endothelial cells (BAEC) were cultured with different concentrations of a NEFA mixture that reflected the plasma NEFA composition during different stages of lactation. The expression of cytokines, adhesion molecules, and eicosanoids were measured to assess changes in BAEC inflammatory phenotype. Addition of NEFA mixtures altered the fatty acid profile of BAEC by increasing the concentration of stearic acid (C18:0) and decreasing the content of arachidonic acid (C20:4n6c) and other long-chain polyunsaturated fatty acids in the phospholipid fraction. A significant increase also occurred in mRNA expression of cytokine and adhesion molecules that are associated with increased inflammatory responses during the transition period. Expression of cyclooxygenase 2, an important enzyme associated with eicosanoid biosynthesis, was increased in a NEFA concentration-dependent manner. The production of linoleic acid-derived eicosanoids 9- and 13-hydroxyoctadecadienoic acids also was increased significantly after treatment with NEFA mixtures. This research described for the first time specific changes in vascular inflammatory response during in vitro exposure to NEFA mixtures that mimic the composition and concentration found in cows during the transition period. These findings could explain, in part, alterations in inflammatory responses observed during intense lipid mobilization stages such as in the transition period of dairy cows. Future studies should analyze specific mechanisms by which high NEFA concentrations induce a vascular proinflammatory phenotype including the effect of 9 and 13-hydroxyoctadecadienoic acids and other lipid mediators.


Journal of Dairy Science | 2012

Changes in glucose transporter expression in monocytes of periparturient dairy cows

N.J. O’Boyle; G.A. Contreras; S.A. Mattmiller; Lorraine M. Sordillo

The transition period of dairy cows is characterized by dramatic changes in metabolism and immune cell function that contributes to increased susceptibility to several economically important diseases. Monocyte and macrophage populations increase in blood and tissues of cows during the transition period and have enhanced inflammatory responses that may contribute to increased severity of disease. Glucose is a major energy source for activated monocytes and glucose uptake is facilitated by glucose transporters (GLUT). The objective of this study was to determine how bovine monocyte GLUT expression changes during lactogenesis and in response to proinflammatory stimulation. Blood samples were collected from 10 dairy cows approximately 5 wk before calving and during the first week of lactation. Monocytes were isolated from total peripheral blood mononuclear cells, and expression of GLUT1, GLUT3, and GLUT4 isoforms was assessed in resting cells and following endotoxin stimulation. In general, the onset of lactation served to decrease overall GLUT expression. Gene and protein expression of GLUT1 was significantly decreased after parturition, and GLUT3 and GLUT4 cell surface expression was also significantly decreased postcalving. Endotoxin stimulation, however, increased gene expression of GLUT3 and GLUT4, and gene expression for all GLUT isoforms was positively correlated to production of tumor necrosis factor-α. This study identified, for the first time, the presence of GLUT isoforms in bovine monocytes. Alterations in monocyte GLUT expression at the onset of lactation warrant further investigation to ascertain how changes in glucose uptake may contribute to periparturient inflammatory dysfunction.


Journal of Dairy Science | 2014

Association between polyunsaturated fatty acid-derived oxylipid biosynthesis and leukocyte inflammatory marker expression in periparturient dairy cows

William Raphael; G.A. Contreras; Lorraine M. Sordillo

Peripheral blood mononuclear leukocytes from periparturient cows can have exacerbated inflammatory responses that contribute to disease incidence and severity. Oxylipids derived from the oxygenation of polyunsaturated fatty acids (PUFA) can regulate the magnitude and duration of inflammation. Although PUFA substrate for oxylipid biosynthesis in leukocytes is known to change across the periparturient period, the plasma oxylipid profile and how this profile relates to leukocyte inflammatory phenotype is not clear. The objective of this study was to determine if a relationship exists between the profile of pro- and antiinflammatory plasma oxylipids and the inflammatory phenotype of peripheral blood leukocytes during the periparturient period. Seven multiparous Holsteins were sampled from the prepartum period through peak lactation. Plasma oxylipids were measured by liquid chromatography-mass spectrometry, peripheral leukocyte mRNA expression was measured by quantitative PCR, and PUFA content of peripheral blood mononuclear cells was measured by gas chromatography-mass spectrometry. Concentrations of several hydroxyl products of linoleic and arachidonic acid changed over time. Linoleic acid and arachidonic acid concentrations in leukocytes increased during early lactation, suggesting that substrate availability for hydroxyoctadecadienoic and hydroxyeicosatetraenoic acid biosynthesis may influence the oxylipid profile. Leukocyte mRNA expressions of IL-12B, IL-1B, inducible nitric oxide synthase 2, and cyclooxygenase 2 were correlated with several plasma oxylipids. These are the first observations linking leukocyte inflammatory gene responses to shifts in oxylipid biosynthesis in periparturient dairy cows.


Journal of Dairy Science | 2012

Enhanced n-3 phospholipid content reduces inflammatory responses in bovine endothelial cells

G.A. Contreras; S.A. Mattmiller; William Raphael; J.C. Gandy; Lorraine M. Sordillo

Uncontrolled inflammation contributes to the increased incidence and severity of infectious diseases in periparturient dairy cattle. The objective of this study was to determine if increasing n-3 fatty acid (FA) content and altering the profile of vasoactive eicosanoids could attenuate endothelial cell inflammatory responses. Bovine aortic endothelial cells (BAEC) were cultured with free FA mixtures that mimic the plasma NEFA composition during the first week of lactation of dairy cows or with a free FA mixture supplemented with a higher proportion of n-3 FA, including eicosapentaenoic and docosahexaenoic acids. The effects of increasing the docosahexaenoic and eicosapentaenoic acid content of BAEC on the expression of proinflammatory mediators and eicosanoid biosynthesis was assessed. Culturing BAEC with enriched concentrations of n-3 FA decreased the expression of proinflammatory cytokines, adhesion molecules, and reactive oxygen species with a concomitant increase in the biosynthesis of proresolving eicosanoids, including resolvins, protectins, and lipoxins. This study showed for the first time that increasing the n-3 FA content of endothelial cell phospholipids could alter the expression of eicosanoids and control the magnitude of inflammatory responses. Future studies are necessary to elucidate the mechanisms by which resolvins, protectins, and lipoxins may modify endothelial inflammatory pathways necessary to reduce the severity and duration of disease in periparturient cows.


Journal of Dairy Science | 2015

Herd management and social variables associated with bulk tank somatic cell count in dairy herds in the eastern United States

R.L. Schewe; J. Kayitsinga; G.A. Contreras; C. Odom; W.A. Coats; Phillip T. Durst; Ernest Hovingh; Rubén O. Martinez; R. Mobley; Stanley J. Moore; Ronald J. Erskine

The ability to reduce somatic cell counts (SCC) and improve milk quality depends on the effective and consistent application of established mastitis control practices. The US dairy industry continues to rely more on nonfamily labor to perform critical tasks to maintain milk quality. Thus, it is important to understand dairy producer attitudes and beliefs relative to management practices, as well as employee performance, to advance milk quality within the changing structure of the dairy industry. To assess the adoption rate of mastitis control practices in United States dairy herds, as well as assess social variables, including attitudes toward employees relative to mastitis control, a survey was sent to 1,700 dairy farms in Michigan, Pennsylvania, and Florida in January and February of 2013. The survey included questions related to 7 major areas: sociodemographics and farm characteristics, milking proficiency, milking systems, cow environment, infected cow monitoring and treatment, farm labor, and attitudes toward mastitis and related antimicrobial use. The overall response rate was 41% (21% in Florida, 39% in Michigan, and 45% in Pennsylvania). Herd size ranged from 9 to 5,800 cows. Self-reported 3-mo geometric mean bulk tank SCC (BTSCC) for all states was 194,000 cells/mL. Multivariate analysis determined that proven mastitis control practices such as the use of internal teat sealants and blanket dry cow therapy, and not using water during udder preparation before milking, were associated with lower BTSCC. Additionally, farmer and manager beliefs and attitudes, including the perception of mastitis problems and the threshold of concern if BTSCC is above 300,000 cells/mL, were associated with BTSCC. Ensuring strict compliance with milking protocols, giving employees a financial or other penalty if BTSCC increased, and a perceived importance of reducing labor costs were negatively associated with BTSCC in farms with nonfamily employees. These findings highlight the need for a comprehensive approach to managing mastitis, one that includes the human dimensions of management to maintain the practice of scientifically validated mastitis control practices.


Journal of Dairy Science | 2010

Ethyl pyruvate diminishes the endotoxin-induced inflammatory response of bovine mammary endothelial cells

C.M. Corl; H.R. Robinson; G.A. Contreras; Susan J. Holcombe; Vanessa L. Cook; Lorraine M. Sordillo

The endotoxin-induced inflammatory response during coliform mastitis is difficult to control with the currently available therapeutics. Endothelial cells are among the first cell type to be engaged in the inflammatory response and can modulate the severity of inflammation by producing proinflammatory mediators upon endotoxin exposure. Ethyl pyruvate, an ethyl ester of pyruvic acid, can ameliorate endotoxin-induced inflammatory responses by inhibiting the production of proinflammatory mediators in several in vitro and in vivo endotoxemia models. The objective of this study was to determine the effect of ethyl pyruvate on the production of vascular proinflammatory mediators that are associated with the pathogenesis of coliform mastitis. The ability of ethyl pyruvate to reduce the expression of proinflammatory mediators was evaluated in cultured bovine mammary endothelial cells (BMEC) stimulated with endotoxin. Treatment of endotoxin-stimulated BMEC with ethyl pyruvate significantly reduced gene expression of IL-6, IL-8, and intercellular adhesion molecule 1 as well as expression of eicosanoid-producing enzymes, including cyclooxygenase 2 and 15-lipoxygenase 1. This is the first time that the effect of ethyl pyruvate was evaluated in an in vitro BMEC model of coliform mastitis. The ability of ethyl pyruvate to effectively inhibit gene and protein expression of potent vascular proinflammatory mediators in vitro warrants further investigations to assess in vivo efficacy. Ethyl pyruvate is safe for human consumption, and it may be an attractive candidate as a therapeutic in ameliorating the severe pathogenesis associated with coliform mastitis.


Journal of Dairy Science | 2015

Cultural lag: A new challenge for mastitis control on dairy farms in the United States

Ronald J. Erskine; Rubén O. Martinez; G.A. Contreras

Recent changes in the US dairy industry include increases in herd size and the proportion of milk that is produced by large herds. These changes have been accompanied by an increased reliance on hired employees and an increasing role of immigrant labor to perform critical tasks such as milking cows. Thus, there is a growing need for training and education programs for dairy employees because many employees lack previous dairy experience and employee turnover rates are problematic on many farms. Although extension programs have played an important role in the education and support of dairy producers and allied professionals in attaining improved milk quality, dairy employees have limited access to educational programs. Additionally, metrics to assess employee learning are not validated and the ability to sustain work-related behavioral change has not been well described. In this article, we propose a model that may further our understanding of communication and cultural barriers between dairy managers and employees, based on a demonstration project in 12 Michigan dairy herds. As part of this demonstration, a pilot survey was tested to assess the management culture on dairy farms. Results from this survey found that only 23% of employees across all herds were able to meet with farm management on a regular basis, 36% of employees did not know somatic cell count goals for the farm for which they worked, and 71% of employees stated they primarily received training on milking protocols by other employees or that they learned on their own. Latino employees were more likely to not know farm goals or receive primary training on milking protocols from other employees or on their own compared with their English-speaking counterparts. The survey information, along with input from focus group discussions with participating dairy producers, veterinarians, and employees, suggests that extension needs to build capacity for on-farm training and education for employees to support their engagement within dairy operations.


Veterinary Immunology and Immunopathology | 2010

Lipoxygenase metabolites modulate vascular-derived platelet activating factor production following endotoxin challenge

C.M. Corl; G.A. Contreras; Lorraine M. Sordillo

Endotoxin promotes the production of potent pro-inflammatory lipid mediators, such as platelet activating factor (PAF) and eicosanoids, which contribute to the pathophysiology of endotoxic shock. Endothelial cells are both a target for and producers of these lipid mediators so it is vital to understand the pathways leading to their production in these cells. Previous research suggested a positive feedback loop between eicosanoids and PAF during endotoxemia. This study sought to determine if eicosanoids derived from the 15-lipoxygenase (15-LOX1) pathway can modulate the biosynthesis of PAF in cultured bovine aortic endothelial cells (BAEC) following endotoxin stimulation. Endotoxin stimulation increased the production of 15-LOX1-derived eicosanoids prior to PAF in primary BAEC. Exogenous addition of specific 15-LOX1 eicosanoids, as well as overexpression of 15-LOX1 in endotoxin-stimulated BAEC, further increased the endotoxin-induced production of PAF. Whereas increased expression of 15-LOX1 activity can further exacerbate endotoxin-induced PAF biosynthesis, inhibition of 15-LOX1 activity is not capable of abrogating the initial onset of endotoxin-induced PAF production. The results indicate that 15-LOX1 activity is not necessary for the initial induction of PAF following endotoxin stimulation. There may exist, however, a role for elevated 15-LOX1 activity in further escalating the extent of PAF biosynthesis in BAEC during endotoxic shock. Determining factors that can potentiate endotoxin-induced vascular dysfunction may lead to the development of novel therapeutic targets to diminish the pathophysiological effects of endotoxic shock.

Collaboration


Dive into the G.A. Contreras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Raphael

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

J. Kayitsinga

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Phil Sears

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.L. Lock

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

J David Munoz

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. E. Schmidt

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

S.A. Mattmiller

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge