Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. A. White is active.

Publication


Featured researches published by G. A. White.


BMC Veterinary Research | 2010

Comparative distribution of human and avian type sialic acid influenza receptors in the pig

Rahul K Nelli; Suresh V. Kuchipudi; G. A. White; Belinda Baquero Perez; Stephen P. Dunham; Kin-Chow Chang

BackgroundA major determinant of influenza infection is the presence of virus receptors on susceptible host cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal) linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal) linked receptors. To date, there has been no detailed account published on the distribution of SA receptors in the pig, a model host that is susceptible to avian and human influenza subtypes, thus with potential for virus reassortment. We examined the relative expression and spatial distribution of SAα2,3-GalG(1-3)GalNAc and SAα2,6-Gal receptors in the major organs from normal post-weaned pigs by binding with lectins Maackia amurensis agglutinins (MAA II) and Sambucus nigra agglutinin (SNA) respectively.ResultsBoth SAα2,3-Gal and SAα2,6-Gal receptors were extensively detected in the major porcine organs examined (trachea, lung, liver, kidney, spleen, heart, skeletal muscle, cerebrum, small intestine and colon). Furthermore, distribution of both SA receptors in the pig respiratory tract closely resembled the published data of the human tract. Similar expression patterns of SA receptors between pig and human in other major organs were found, with exception of the intestinal tract. Unlike the limited reports on the scarcity of influenza receptors in human intestines, we found increasing presence of SAα2,3-Gal and SAα2,6-Gal receptors from duodenum to colon in the pig.ConclusionsThe extensive presence of SAα2,3-Gal and SAα2,6-Gal receptors in the major organs examined suggests that each major organ may be permissive to influenza virus entry or infection. The high similarity of SA expression patterns between pig and human, in particular in the respiratory tract, suggests that pigs are not more likely to be potential hosts for virus reassortment than humans. Our finding of relative abundance of SA receptors in the pig intestines highlights a need for clarification on the presence of SA receptors in the human intestinal tract.


Journal of Molecular and Genetic Medicine | 2009

Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission.

Suresh V. Kuchipudi; Rahul K Nelli; G. A. White; M. Bain; Kin-Chow Chang; Stephen P. Dunham

Avian influenza viruses are considered to be key contributors to the emergence of human influenza pandemics. A major determinant of infection is the presence of virus receptors on susceptible cells to which the viral haemagglutinin is able to bind. Avian viruses preferentially bind to sialic acid α2,3-galactose (SAα2,3-Gal) linked receptors, whereas human strains bind to sialic acid α2,6-galactose (SAα2,6-Gal) linked receptors. While ducks are the major reservoir for influenza viruses, they are typically resistant to the effects of viral infection, in contrast to the frequently severe disease observed in chickens. In order to understand whether differences in receptors might contribute to this observation, we studied the distribution of influenza receptors in organs of ducks and chickens using lectin histochemistry with linkage specific lectins and receptor binding assays with swine and avian influenza viruses. Although the intestinal epithelial cells of both species expressed only SAα2,3-Gal receptors, we found widespread presence of both SAα2,6-Gal and SAα2,3-Gal receptors in many organs of both chickens and ducks. Co-expression of both receptors may allow infection of cells with both avian and human viruses and so present a route to genetic reassortment. There was a marked difference in the primary receptor type in the trachea of chickens and ducks. In chicken trachea, SAα2,6-Gal was the dominant receptor type whereas in ducks SAα2,3-Gal receptors were most abundant. This suggests that chickens could be more important as an intermediate host for the generation of influenza viruses with increased ability to bind to SAα2,6-Gal receptors and thus greater potential for infection of humans. Chicken tracheal and intestinal epithelial cells also expressed a broader range of SAα2,3-Gal receptors (both β(1-4)GlcNAc and β(1-3)GalNAc subtypes) in contrast to ducks, which suggests that they may be able to support infection with a broader range of avian influenza viruses.


Virology Journal | 2012

18S rRNA is a reliable normalisation gene for real time PCR based on influenza virus infected cells

Suresh V. Kuchipudi; Meenu Tellabati; Rahul K Nelli; G. A. White; Belinda Baquero Perez; Sujith Sebastian; Marek J. Slomka; Sharon M. Brookes; Ian H. Brown; Stephen P. Dunham; Kin-Chow Chang

BackgroundOne requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes.ResultsThe relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells.ConclusionsBased on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation.


Immunology and Cell Biology | 2012

Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1.

Suresh V. Kuchipudi; Stephen P. Dunham; Rahul K Nelli; G. A. White; Vivien J. Coward; Marek J. Slomka; Ian H. Brown; Kin-Chow Chang

Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and ‘classical’ highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long‐standing enigma of host–pathogen relationships for highly pathogenic and zoonotic avian influenza.


Journal of Virology | 2012

Mammalian Innate Resistance to Highly Pathogenic Avian Influenza H5N1 Virus Infection Is Mediated through Reduced Proinflammation and Infectious Virus Release

Rahul K Nelli; Stephen P. Dunham; Suresh V. Kuchipudi; G. A. White; Belinda Baquero-Perez; Pengxiang Chang; Amir M. Ghaemmaghami; Sharon M. Brookes; Ian H. Brown; Kin-Chow Chang

ABSTRACT Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans.


Animal | 2008

Physicochemical changes to starch granules during micronisation and extrusion processing of wheat, and their implications for starch digestibility in the newly weaned piglet

G. A. White; Frederic J. Doucet; Sandra E. Hill; J. Wiseman

Two trials were performed to assess changes in the physicochemical properties of precisely processed (micronised v. extruded) wheats, prior to inclusion in piglet diets. The in vitro data obtained were subsequently related to biological responses of newly weaned piglets over 14 days. The effects of the severity of micronisation (Trial 1) or extrusion (Trial 2) on the nutritional value of two wheats (varying in endosperm texture) were examined. Extrusion, in contrast to micronisation, drastically disrupted the structural properties of wheat starch granules through melting of crystallites and macromolecular degradation of starch polysaccharides. These structural changes strongly improved the hydration characteristics of starch and its digestibility. The amount of starch digested in vitro was approximately 0.20, 0.70 and 0.90 for the unprocessed, micronised and extruded samples, respectively. This enhanced in vitro digestibility correlated well with, and helped to explain, the significant improvement in the apparent digestibility of starch at both the 0.5 region (mean coefficients for extruded wheat were 0.869 and 0.959 v. raw 0.392; P = 0.017) and 0.75 region (extruded 0.973 v. raw 0.809; P = 0.009) of the small intestine, when compared with piglets fed an unprocessed wheat diet. Extrusion and, to a lesser extent, micronisation lessened the reduction in apparent starch digestibility on day 4 post-weaning, typically seen at the 0.5 intestinal region in piglets fed an unprocessed wheat diet. Processing variables influenced both in vitro and in vivo data, with for instance, a positive relationship between specific mechanical energy (SME) input during extrusion and starch digestibility at the 0.5 region. The higher digestibility coefficient observed at the 0.5 region for the high SME diet suggests enhanced digestion and more rapid release of starch. However, it remains to be seen whether a diet containing rapidly digestible, as opposed to slowly digestible, starch is more beneficial for piglets. This rate of starch breakdown in the piglet is an important finding, which may have implications in helping to alleviate the post-weaning growth check, particularly in the absence of in-feed antibiotic growth promoters. Processing did not appear to offer any benefit over unprocessed wheat with regard to daily live-weight gain or the apparent digestibility of nitrogen in the small intestine over the 14-day period. Based on the enhanced in vivo starch digestibility, performance might be improved over a longer period, although future studies are required to confirm this. Precise processing variables for raw materials must be stated in all animal trials.


Animal | 2008

Physicochemical properties and nutritional quality of raw cereals for newly weaned piglets

G. A. White; Frederic J. Doucet; Sandra E. Hill; J. Wiseman

The digestibility of the starch component of raw cereals in newly weaned piglets is highly variable. Reasons for this must be elucidated if the most suitable cereals are to be used. A novel approach was employed, which consisted of assessing the physicochemical properties (rapid visco analysis, water absorption and solubility indices, particle size distribution and in vitro amylolytic digestion) of eight raw cereals contained within piglet diets and subsequently relating this in vitro data to the biological responses of weaned piglets. Trial 1 examined soft and hard wheat, trial 2 - soft wheat, barley, rye and triticale, and trial 3 - soft wheat, naked oats, whole oats and maize. The initial observation was that in vitro testing prior to animal trials is recommended in nutritional evaluation since it indicated fundamental differences between raw cereals, such as for example the levels of endogenous amylase in wheat. Starch and nitrogen digestibility differed between cereals (apparent digestibility coefficients at the 0.5 site of the small intestine ranged from 0.10 to 0.69 for starch and from 0.17 to 0.68 for nitrogen). There is also a probable relationship between the coefficients of ileal apparent starch digestibility, at approximately halfway from the gastric pylorus to the ileocaecal valve, and the presence of endogenous amylase (mean values of 0.53 and 0.62 in trials 2 and 3, respectively, for the higher amylase wheat; 0.38 for the low-amylase wheat used in trial 1). This additional variable (i.e. the unforeseen presence of endogenous amylase) in wheat made it more difficult to draw a firm conclusion about the nutritional suitability of the different cereals. All raw-cereal diets caused atrophy of the villi during the initial week following weaning, but the soft wheat was associated with the highest comparative villi height and might therefore be considered the best of all raw cereals in minimising the post-weaning growth check. For wheat, this might also suggest a possible interaction between villus architecture and endosperm texture in the immediate post-weaning period.


British Journal of Nutrition | 2010

Predicting in vivo starch digestibility coefficients in newly weaned piglets from in vitro assessment of diets using multivariate analysis

Frederic J. Doucet; G. A. White; Florian Wulfert; Sandra E. Hill; J. Wiseman

The study was based on correlating a dataset of in vivo mean starch digestibility coefficients obtained in the immediate post-weaning phase of piglets with a range of dietary in vitro variables. The paper presents a model that predicts (R2 0.71) in vivo average starch digestibility coefficients in the 0.5 small-intestinal region of newly weaned piglets fed cereal-based diets using seven in vitro variables describing starch properties that are fundamentally associated with the quality of feed materials, i.e. hydration, structure and amylolytic digestion. The variables were: Rapid Visco Analyser (RVA; measures the viscosity of materials when sheared under defined hydration and temperature regimens); RVA end viscosity; RVA (gelatinisation) peak viscosity; DeltaH (gelatinisation enthalpy that provides an estimate of helical order or degree of crystallinity in starch); water solubility index (WSI; that denotes the amount of soluble polysaccharides released from starch granules to the aqueous phase); grain endogenous amylase (concentration of endogenous alpha-amylase in cereals, assessed by pasting cereal flours in 25 g of AgNO3, an amylase inhibitor v. water using RVA).


British Poultry Science | 2015

Assessment of caecal parameters in layer hens fed on diets containing wheat distillers dried grains with solubles

G. A. White; P.J. Richards; S. Wu; Kenneth H. Mellits; J. Wiseman

Abstract There is much interest in quantifying the nutritional value of UK wheat distillers dried grains with solubles (W-DDGS) for livestock species. A study was designed to evaluate caecal parameters (pH, short chain fatty acids (SCFAs) and bacterial diversity) in layer hens fed on balanced diets containing graded concentrations of W-DDGS. A total of 32 layer hens (Bovans Brown strain at 27 weeks of age) were randomly allocated to one of 4 dietary treatments containing W-DDGS at 0, 60, 120 or 180 g/kg. Each treatment was fed to 8 replicate individually housed layer hens over a 5-d acclimatisation period, followed by a 4-week trial. Individual feed intakes were monitored and all eggs were collected daily for weeks 2, 3 and 4 of the trial, weighed and an assessment of eggshell “dirtiness” made. All hens were culled on d 29 and caecal pH and SCFAs measured. Polymerase chain reaction denaturing gradient gel electrophoresis of the bacterial 16 S rDNA gene was used to assess total bacterial diversity of luminal caecal content from hens fed the 0 and 180 g W-DDGS/kg diets. Unweighted pair group method with arithmetic mean (UPGMA) dendrograms were generated from DGGE banding patterns. Increasing W-DDGS dietary concentrations resulted in a more acidic caecal environment. Caecal SCFAs were unaffected by diet aside from a quadratic effect for molar proportions of isobutyric acid. Diversity profiles of the bacterial 16S rRNA gene from luminal caecal contents were unaffected by W-DDGS inclusion. The results of the current study suggest that W-DDGS can be successfully formulated into nutritionally balanced layer diets (supplemented with xylanase and phytase) at up to 180 g/kg with no detrimental effects to the caecal environment.


Journal of Small Animal Practice | 2011

Canine obesity: is there a difference between veterinarian and owner perception?

G. A. White; Pru Hobson-West; Kate Cobb; J. Craigon; R. Hammond; Kate Millar

Collaboration


Dive into the G. A. White's collaboration.

Top Co-Authors

Avatar

J. Wiseman

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Kin-Chow Chang

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Rahul K Nelli

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh V. Kuchipudi

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra E. Hill

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Ian H. Brown

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Craigon

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge