Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Andres Contreras is active.

Publication


Featured researches published by G. Andres Contreras.


Comparative Immunology Microbiology and Infectious Diseases | 2011

Lipid mobilization and inflammatory responses during the transition period of dairy cows

G. Andres Contreras; Lorraine M. Sordillo

The transition period of dairy cattle is characterized by dramatic changes in metabolism and host defense mechanisms that are associated with increased disease. Intense lipid mobilization from tissue stores is an important metabolic adaptation during the transition period that results in significant release of non-esterified fatty acids (NEFA) into the blood stream. Whereas these fatty acids are important sources of energy during times of increased metabolic demands, elevated concentrations of NEFA are known to disrupt several immune and inflammatory functions. This review will discuss the implications of lipid mobilization on inflammatory responses with special emphasis on leukocytes and endothelial cell functions during the transition period of dairy cows.


Journal of Mammary Gland Biology and Neoplasia | 2011

Mastitis: Comparative Etiology and Epidemiology

G. Andres Contreras; Juan M. Rodríguez

Mastitis is broadly defined as the inflammation of the mammary gland; however, the concept of mastitis is customized to address its social and clinical impact in the case of humans and the health, welfare, and economic consequences for other mammals. There are many microbial, host, and environmental factors that influence the development of mastitis. Some are common to all mammals as well as inherent to each species. Together these factors influence the most prevalent etiological agents for each species and might determine the possibility of interspecies transmission with its consequences to public health. The present review will summarize and compare reports on mastitis etiology and its epidemiology in humans and food animal species.


American Journal of Physiology-endocrinology and Metabolism | 2014

Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation

G. Andres Contreras; Yun Hee Lee; Emilio P. Mottillo; James G. Granneman

Brown adipocytes (BA) generate heat in response to sympathetic activation and are the main site of nonshivering thermogenesis in mammals. Although most BA are located in classic brown adipose tissue depots, BA are also abundant in the inguinal white adipose tissue (iWAT) before weaning. The number of BA is correlated with the density of sympathetic innervation in iWAT; however, the role of continuous sympathetic tone in the establishment and maintenance of BA in WAT has not been investigated. BA marker expression in iWAT was abundant in weaning mice but was greatly reduced by 8 wk of age. Nonetheless, BA phenotype could be rapidly reinstated by acute β₃-adrenergic stimulation with CL-316,243 (CL). Genetic tagging of adipocytes with adiponectin-CreER(T2) demonstrated that CL reinstates uncoupling protein 1 (UCP1) expression in adipocytes that were present before weaning. Chronic surgical denervation dramatically reduced the ability of CL to induce the expression of UCP1 and other BA markers in the tissue as a whole, and this loss of responsiveness was prevented by concurrent treatment with CL. These results indicate that ongoing sympathetic activity is critical to preserve the ability of iWAT fat cells to express a BA phenotype upon adrenergic stimulation.


Comparative Immunology Microbiology and Infectious Diseases | 2014

Adiponectin links adipose tissue function and monocyte inflammatory responses during bovine metabolic stress.

Ed Kabara; Lorraine M. Sordillo; Sue Holcombe; G. Andres Contreras

The periparturient period of dairy cows is characterized by intense lipid mobilization from adipose tissue leading to increased plasma concentrations of nonesterified fatty acids (NEFA). High NEFA are a predisposing factor for inflammatory based diseases. A major component of these diseases is uncontrolled macrophage/monocyte inflammatory responses. Changes in the endocrine activity of adipose tissue during the periparturient period could impact macrophage function by modifying the secretion of adipokines including adiponectin. Currently, the effects of adiponectin on monocyte activation in dairy cattle are unknown. In humans and rodents, this adipokine regulates monocyte phenotype and alterations in its plasma levels are linked with the development of inflammatory diseases. The objectives of this study were to establish associations between plasma adiponectin expression dynamics and different markers of lipid mobilization during the periparturient period of dairy cows and to characterize the effects of adiponectin on the inflammatory response of bovine monocytes. Plasma adiponectin, NEFA, BHB, albumin, and subcutaneous and retroperitoneal fat depots depth were measured during the periparturient period of dairy cows. In vitro, bovine monocytes were cultured with adiponectin to assess changes in pro-inflammatory responses following LPS stimulation. Results from this study demonstrate that alterations in plasma adiponectin levels in periparturient cattle are inversely correlated with the concentrations of plasma NEFA, an important marker of lipid mobilization. Furthermore, adiponectin exposure significantly decreased monocyte expression of TNFα after LPS stimulation thus markedly reducing their inflammatory response. Reduced plasma adiponectin during the periparturient period could predispose dairy cows to the development of uncontrolled monocyte inflammatory responses.


Journal of animal science and biotechnology | 2017

Adipose tissue lipolysis and remodeling during the transition period of dairy cows

G. Andres Contreras; Clarissa Strieder-Barboza; William Raphael

Elevated concentrations of plasma fatty acids in transition dairy cows are significantly associated with increased disease susceptibility and poor lactation performance. The main source of plasma fatty acids throughout the transition period is lipolysis from adipose tissue depots. During this time, plasma fatty acids serve as a source of calories mitigating the negative energy balance prompted by copious milk synthesis and limited dry matter intake. Past research has demonstrated that lipolysis in the adipose organ is a complex process that includes not only the activation of lipolytic pathways in response to neural, hormonal, or paracrine stimuli, but also important changes in the structure and cellular distribution of the tissue in a process known as adipose tissue remodeling. This process involves an inflammatory response with immune cell migration, proliferation of the cellular components of the stromal vascular fraction, and changes in the extracellular matrix. This review summarizes current knowledge on lipolysis in dairy cattle, expands on the new field of adipose tissue remodeling, and discusses how these biological processes affect transition cow health and productivity.


Journal of Dairy Science | 2015

Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum

G. Andres Contreras; Ed Kabara; Jill Brester; Louis Neuder; Matti Kiupel

High concentrations of plasma nonesterified fatty acids (NEFA), a direct measure of lipolysis, are considered a risk factor for displaced abomasum (DA) and other clinical diseases. In nonruminants, uncontrolled lipolysis is commonly associated with adipose tissue macrophage (ATM) infiltration. In dairy cows, recent studies report ATM infiltration in specific adipose depots during the first week of lactation. Depending on their phenotype, ATM can be broadly classified as classically activated (M1) or alternatively activated (M2). The M1 ATM are considered pro-inflammatory, whereas M2 ATM enhance inflammation resolution. Currently, it is not known whether multiparous transition cows with DA have increased ATM infiltration, and the predominant phenotype of these mononuclear cells remains unclear. The objective of this study was to characterize ATM infiltration into different adipose tissue depots in transition cows with DA (days in milk=7.8±4.6 d; body condition score=2.95±0.10; n=6). Serum samples and biopsies from omental (OM) and subcutaneous (SC) fat depots were obtained during corrective surgery for DA. In an effort to compare ATM infiltration in DA cows with that of healthy cows in anabolic state (AS), adipose biopsies and blood samples were collected from nonlactating, nongestating dairy cows at the time of slaughter (body condition score=3.75±0.12; n=6). Adipose tissues were digested and cells from the stromal vascular fraction (SVF) were analyzed using flow cytometry to establish cell surface expression of specific macrophage markers including CD14, CD11c, CD163, and CD172a. Tissue sections were analyzed by immunohistochemistry to assess ATM localization. Cows with DA were ketotic and had plasma NEFA above 1.0 mEq/L. The same group of cows had significant infiltration of ATM in OM characterized by increased numbers of SVF cells expressing CD14 and CD172a. At the same time, expression of CD11c, and CD163 was significantly higher in SVF from OM and SC of DA cows compared with those from AS animals. Expression of M1 macrophage inflammatory phenotype-related genes CCL2, IL6, and TNFα in SVF from cows with DA was significantly higher than that in healthy cows (AS). Significant populations of ATM in OM and SC depots of cows with DA were localized in multiple cellular aggregates that included multinucleated cells. In contrast, ATM in AS cows were fewer and randomly localized in both SC and OM. Together, these results indicate that infiltration of classically activated ATM is a concurrent finding in DA cases and may be associated with metabolic stress around parturition contributing to the pro-inflammatory status of transition dairy cows. Future studies are needed to establish whether ATM infiltration is more pronounced in cows with DA compared with healthy dairy cows at the same lactation stage and if this increased mononuclear immune cell trafficking has any pathophysiological significance.


Journal of Dairy Science | 2016

Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance

G. Andres Contreras; Kyan Thelen; Sarah E Schmidt; Clarissa Strieder-Barboza; Courtney L Preseault; William Raphael; Matti Kiupel; John P. Caron; A.L. Lock

Excessive rates of demand lipolysis in the adipose tissue (AT) during periods of negative energy balance (NEB) are associated with increased susceptibility to disease and limited lactation performance. Lipolysis induces a remodeling process within AT that is characterized by an inflammatory response, cellular proliferation, and changes in the extracellular matrix (ECMT). The adipose tissue macrophage (ATM) is a key component of the inflammatory response. Infiltration of ATM-forming cellular aggregates was demonstrated in transition cows, suggesting that ATM trafficking and phenotype changes may be associated with disease. However, it is currently unknown if ATM infiltration occurs in dairy cows only during NEB states related to the transition period or also during NEB-induced lipolysis at other stages of lactation. The objective of this study was to evaluate changes in ATM trafficking and inflammatory phenotypes, and the expression of genetic markers of AT remodeling in healthy late-lactation cows during feed restriction-induced NEB. After a 14-d (d -14 to d -1) preliminary period, Holstein cows were randomly assigned to 1 of 2 feeding protocols, ad libitum (AL) or feed restriction (FR), for 4 d (d 1-4). Caloric intake was reduced in FR to achieve a targeted energy balance of -15 Mcal/d of net energy for lactation. Omental and subcutaneous AT samples were collected laparoscopically to harvest stromal vascular fraction (SVF) cells on d -3 and 4. The FR induced a NEB of -14.1±0.62 Mcal/d of net energy for lactation, whereas AL cows remained in positive energy balance (3.2±0.66 Mcal/d of NEL). The FR triggered a lipolytic response reflected in increased plasma nonesterified fatty acids (0.65±0.05 mEq/L on d 4), enhanced phosphorylation of hormone sensitive lipase, and reduced adipocyte diameter. Flow cytometry and immunohistochemistry analysis revealed that on d 4, FR cows had increased numbers of CD172a+, an ATM (M1 and M2) surface marker, cells in SVF that were localized in aggregates. However, FR did not alter the number of SVF cells expressing M1 markers (CD14 and CD11c) or M2 markers (CD11b and CD163). This finding contrasts with the predominately M1 phenotype observed previously in ATM from clinically diseased cows. No changes were observed in the expression of ECMT-related or cell proliferation markers. In summary, an acute 4-d lipolytic stimulus in late-lactation dairy cows led to ATM infiltration with minimal changes in inflammatory phenotype and no changes in ECMT. These results underscore that physiological changes related to parturition, the onset of lactation, extended periods of lipolysis, or a combination of these can induce intense AT remodeling with enhanced ATM inflammatory phenotype expression that may impair the metabolic function of AT in transition dairy cattle.


Physiological Reports | 2016

The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location.

G. Andres Contreras; Kyan Thelen; Nadia Ayala-Lopez; Stephanie W. Watts

There are sex associated differences in the risk for cardiovascular comorbidities in obesity and metabolic syndrome. A common clinical finding in these diseases is the expansion of perivascular adipose tissues (PVAT) which is associated with alterations in their role as regulators of vessel function. PVAT hyperplasia and hypertrophy are dependent on the biology of populations of adipocyte progenitor cells (APC). It is currently unclear if PVAT enlargement diverges between males and females and the mechanisms linking APC biology with sexual dimorphism remain poorly understood. This study tested the hypothesis that vessel location and sexual dimorphism affect the distribution and adipogenic capacity of APC in cardiovascular disease risk relevant PVAT sites. PVAT from thoracic aorta (aPVAT) and mesenteric resistance arteries (mPVAT) was collected from 10‐week‐old female and male Sprague–Dawley rats. Differences in APC distribution in stromal vascular fraction cells from PVAT were determined. APC were defined as cells expressing CD34, CD44, and platelet derived growth factor α. In both sexes aPVAT had fewer APC compared to mPVAT and perigonadal adipose tissue (GON). Sex‐related differences were observed in the expression of CD34, where females had fewer CD34+ cells in PVATs. APC proliferation and adipogenic capacity in vitro were not affected by sex. However, APC from aPVAT had a lower proliferation capacity compared to mPVAT. These data demonstrate that the distribution of APC within PVAT exhibits sexual dimorphism and is affected by anatomical location.


PLOS ONE | 2017

Periparturient lipolysis and oxylipid biosynthesis in bovine adipose tissues

G. Andres Contreras; Clarissa Strieder-Barboza; Jonas de Souza; Jeff Gandy; Vengai Mavangira; A.L. Lock; Lorraine M. Sordillo; Juan J. Loor

The periparturient period of dairy cows is characterized by intense lipolysis in adipose tissues (AT), which induces the release of free fatty acids (FFA) into circulation. Among FFA, polyunsaturated fatty acids are susceptible to oxidation and can modulate inflammatory responses during lipolysis within AT. Linoleic and arachidonic acid oxidized products (oxylipids) such as hydroxy-octadecadienoic acids (HODE) and hydroxy-eicosatetraenoic acids (HETE), were recently identified as products of lipolysis that could modulate AT inflammation during lipolysis. However, the effect of lipolysis intensity during the transition from gestation to lactation on fatty acid substrate availability and subsequent AT oxylipid biosynthesis is currently unknown. We hypothesized that in periparturient dairy cows, alterations in AT and plasma fatty acids and oxylipid profiles coincide with changes in lipolysis intensity and stage of lactation. Blood and subcutaneous AT samples were collected from periparturient cows at -27±7 (G1) and -10±5 (G2) d prepartum and at 8±3 d postpartum (PP). Targeted lipidomic analysis was performed on plasma and AT using HPLC-MS/MS. We report that FFA concentrations increased as parturition approached and were highest at PP. Cows exhibiting high lipolysis rate at PP (FFA>1.0 mEq/L) had higher body condition scores at G1 compared to cows with low lipolysis rate (FFA<1.0 mEq/L). Concentrations of plasma linoleic and arachidonic acids were increased at PP. In AT, 13-HODE, and 5-, 11- and 15-HETE were increased at PP compared to G1 and G2. Concentrations of beta hydroxybutyrate were positively correlated with those of 13-HODE and 15-HETE in AT. Plasma concentrations of 5- and 20-HETE were increased at PP. These data demonstrate that prepartum adiposity predisposes cows to intense lipolysis post-partum and may exacerbate AT inflammation because of increased production of pro-inflammatory oxylipids including 5- and 15-HETE and 13-HODE. These results support a role for certain linoleic and arachidonic acid-derived oxylipids as positive and negative modulators of AT inflammation during periparturient lipolysis.


Journal of Dairy Science | 2017

Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows

G. Andres Contreras; Clarissa Strieder-Barboza; Jenne De Koster

Despite major advances in our understanding of transition and early lactation cow physiology and the use of advanced dietary, medical, and management tools, at least half of early lactation cows are reported to develop disease and over half of cow deaths occur during the first week of lactation. Excessive lipolysis, usually measured as plasma concentrations of free fatty acids (FFA), is a major risk factor for the development of displaced abomasum, ketosis, fatty liver, and metritis, and may also lead to poor lactation performance. Lipolysis triggers adipose tissue (AT) remodeling that is characterized by enhanced humoral and cell-mediated inflammatory responses and changes in its distribution of cellular populations and extracellular matrix composition. Uncontrolled AT inflammation could perpetuate lipolysis, as we have observed in cows with displaced abomasum, especially in those animals with genetic predisposition for excessive lipolysis responses. Efficient transition cow management ensures a moderate rate of lipolysis that is rapidly reduced as lactation progresses. Limiting FFA release from AT benefits immune function as several FFA are known to promote dysregulation of inflammation. Adequate formulation of pre- and postpartum diet reduces the intensity of AT lipolysis. Additionally, supplementation with niacin, monensin, and rumen-protected methyl donors (choline and methionine) during the transition period is reported to minimize FFA release into systemic circulation. Targeted supplementation of energy sources during early lactation improves energy balance and increases insulin concentration, which limits AT lipolytic responses. This review elaborates on the mechanisms by which uncontrolled lipolysis triggers inflammatory disorders. Details on current nutritional and pharmacological interventions that aid the modulation of FFA release from AT and their effect on immune function are provided. Understanding the inherent characteristics of AT biology in transition and early lactation cows will reduce disease incidence and improve lactation performance.

Collaboration


Dive into the G. Andres Contreras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.L. Lock

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kyan Thelen

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Jonas de Souza

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenne De Koster

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Raphael

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Ed Kabara

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge