G. Anton
University of Erlangen-Nuremberg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Anton.
Physical Review Letters | 2008
M. Kotulla; D. Trnka; P. Muehlich; G. Anton; J. C. S. Bacelar; O. Bartholomy; D. Bayadilov; Y. A. Beloglazov; R. Bogendoerfer; R. Castelijns; V. Crede; H. Dutz; A. Ehmanns; D. Elsner; R. Ewald; I. Fabry; M. Fuchs; K. Essig; Ch. Funke; R. W. Gothe; R. Gregor; A. Gridnev; E. Gutz; S. Hoeffgen; P. Hoffmeister; I. Horn; J. Hoessl; I. Jaegle; J. Junkersfeld; H. Kalinowsky
Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the omega meson, this inelastic omega width corresponds to a reduction of the omega lifetime by a factor approximately 30. For the first time, the momentum dependent omegaN cross section has been extracted from the experiment and is in the range of 70 mb.
The Astrophysical Journal | 2016
M. G. Aartsen; K. Abraham; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; D. Altmann; K. Andeen; T. Anderson; I. Ansseau; G. Anton; M. Archinger; C. Argüelles; T. C. Arlen; J. Auffenberg; S. Axani; X. Bai; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. Becker; S. BenZvi; P. Berghaus; D. Berley; E. Bernardini; A. Bernhard; David Z. Besson
Observation of a point source of astrophysical neutrinos would be a smoking gun signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current ν μ interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (∼100 TeV) starting event in the sample found that this event alone represents a 2.8σ deviation from the hypothesis that the data consists only of atmospheric background.
Nature | 2017
M. G. Aartsen; G. C. Hill; A. Kyriacou; S. Robertson; A. Wallace; B. J. Whelan; M. Ackermann; E. Bernardini; Stijn Blot; F. Bradascio; H.-P. Bretz; J. Brostean-Kaiser; A. Franckowiak; E. Jacobi; T. Karg; T. Kintscher; S. Kunwar; R. Nahnhauer; K. Satalecka; C. Spiering; J. Stachurska; A. Stasik; N. L. Strotjohann; A. Terliuk; M. Usner; Van Santen J; J. Adams; H. Bagherpour; J. A. Aguilar; I. Ansseau
Neutrinos interact only very weakly, so they are extremely penetrating. The theoretical neutrino–nucleon interaction cross-section, however, increases with increasing neutrino energy, and neutrinos with energies above 40 teraelectronvolts (TeV) are expected to be absorbed as they pass through the Earth. Experimentally, the cross-section has been determined only at the relatively low energies (below 0.4u2009TeV) that are available at neutrino beams from accelerators. Here we report a measurement of neutrino absorption by the Earth using a sample of 10,784 energetic upward-going neutrino-induced muons. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the neutrino–nucleon interaction cross-section for neutrino energies 6.3–980u2009TeV, more than an order of magnitude higher than previous measurements. The measured cross-section is about 1.3 times the prediction of the standard model, consistent with the expectations for charged- and neutral-current interactions. We do not observe a large increase in the cross-section with neutrino energy, in contrast with the predictions of some theoretical models, including those invoking more compact spatial dimensions or the production of leptoquarks. This cross-section measurement can be used to set limits on the existence of some hypothesized beyond-standard-model particles, including leptoquarks.
Nuclear Physics B - Proceedings Supplements | 2005
G. Anton
arXiv: High Energy Astrophysical Phenomena | 2018
M. G. Aartsen; M. Ackermann; J. Adams; J. A. Aguilar; M. Ahlers; M. Ahrens; I. Al Samarai; D. Altmann; K. Andeen; T. Anderson; I. Ansseau; G. Anton; C. Argüelles; J. Auffenberg; S. Axani; P. Backes; H. Bagherpour; X. Bai; A. Barbano; J. P. Barron; S. W. Barwick; V. Baum; R. Bay; J. J. Beatty; J. Becker Tjus; K. Becker; S. BenZvi; D. Berley; E. Bernardini; David Z. Besson