Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. B. Huntington is active.

Publication


Featured researches published by G. B. Huntington.


Journal of Dairy Research | 2008

Performance of lactating dairy cows fed varying levels of total mixed ration and pasture

R.E. Vibart; Vivek Fellner; J. C. Burns; G. B. Huntington; J.T. Green

Two, 8-week experiments, each using 30 lactating Holstein cows, were conducted to examine performance of animals offered combinations of total mixed ration (TMR) and high-quality pasture. Experiment 1 was initiated in mid October 2004 and Experiment 2 was initiated in late March 2005. Cows were assigned to either a 100% TMR diet (100:00, no access to pasture) or one of the following three formulated partial mixed rations (PMR) targeted at (1) 85% TMR and 15% pasture, (2) 70% TMR and 30% pasture and (3) 55% TMR and 45% pasture. Based on actual TMR and pasture intake, the dietary TMR and pasture proportions of the three PMR in Experiment 1 were 79% TMR and 21% pasture (79:21), 68% TMR and 32% pasture (68:32), and 59% TMR and 41% pasture (59:41), respectively. Corresponding proportions in Experiment 2 were 89% TMR and 11% pasture (89:11), 79% TMR and 21% pasture (79:21) and 65% TMR and 35% pasture (65:35), respectively. Reducing the proportion of TMR in the diets increased pasture consumption of cows on all PMR, but reduced total dry matter intake compared with cows on 100:00. An increase in forage from pasture increased the concentration of conjugated linoleic acids and decreased the concentration of saturated fatty acids in milk. Although milk and milk protein yields from cows grazing spring pastures (Experiment 2) increased with increasing intakes of TMR, a partial mixed ration that was composed of 41% pasture grazed in the fall (Experiment 1) resulted in a similar overall lactation performance with increased feed efficiency compared to an all-TMR ration.


Journal of Dairy Science | 2012

Chromium propionate enhances insulin sensitivity in growing cattle

J. W. Spears; C. S. Whisnant; G. B. Huntington; K.E. Lloyd; R. S. Fry; K. Krafka; A. Lamptey; J. Hyda

Thirty-six Angus and Angus×Simmental heifers, averaging 291 kg, were used to determine the effects of dietary Cr, in the form of Cr propionate (Cr Prop), on glucose metabolism and serum insulin concentrations following glucose administration. Heifers were stratified by body weight (BW) within a breed and randomly assigned to treatments. Treatments consisted of 0, 3, 6, or 9 mg of supplemental Cr/d from Cr Prop. Based on dry matter (DM) intakes, the daily doses of Cr were equivalent to 0.47, 0.94, and 1.42 mg of supplemental Cr/kg of DM. Heifers were individually fed a corn silage-based diet at a level of 2% of BW. Each heifer was also fed 0.45 kg of a ground corn supplement daily that served as a carrier for supplemental Cr. Glucose tolerance tests were performed on d 44 of the study. Glucose was infused via jugular catheters at a level of 0.45 g/kg of BW(0.75) over a course of 1 to 2 min. Blood samples were collected at -10, 0, 5, 10, 15, 30, 45, 60, 90, 120, 150, and 180 min relative to glucose dosing for glucose and insulin determination. Area under the glucose response curve was lower (1,603 vs. 1,964 mg/dL per minute) in heifers supplemented with Cr from 0 to 45 min following glucose challenge. Serum insulin concentrations were lower in Cr-supplemented heifers than in controls following glucose infusion. The molar ratio of insulin to glucose was also lower in Cr-supplemented heifers relative to controls. Serum insulin and serum insulin to glucose ratios did not differ among heifers supplemented with 3, 6, or 9 mg of Cr/d. Results indicate that Cr Prop supplementation increased tissue sensitivity to insulin in growing heifers. Based on insulin sensitivity, Cr requirements (as Cr Prop) of growing heifers can be met by supplementing with 3 mg of Cr/d or 0.47 mg of Cr/kg of DM.


Journal of Dairy Science | 2009

The addition of cottonseed hulls to the starter and supplementation of live yeast or mannanoligosaccharide in the milk for young calves

S.R. Hill; B.A. Hopkins; S. Davidson; S.M. Bolt; D.E. Diaz; C. Brownie; T. Brown; G. B. Huntington; L.W. Whitlow

The objectives of this study were to investigate the effects of the addition of cottonseed hulls (CSH) to the starter and the supplementation of live yeast product (YST) or mannanoligosaccharide product (MOS) to milk, on growth, intake, rumen development, and health parameters in young calves. Holstein (n = 116) and Jersey (n = 46) bull (n = 74) and heifer (n = 88) calves were assigned randomly within sex at birth to treatments. All calves were fed 3.8 L of colostrum daily for the first 2 d. Holstein calves were fed 3.8 L of whole milk, and Jersey calves were fed 2.8 L of whole milk through weaning at 42 d. Calves continued on trial through 63 d. Six treatments were arranged as a 2 x 3 factorial. Calves received either a corn-soybean meal-based starter (21% crude protein and 6% acid detergent fiber; -CSH) or a blend of 85% corn-soybean meal-based starter and 15% CSH (18% crude protein and 14% acid detergent fiber; +CSH) ad libitum. In addition, calves received whole milk with either no supplement (NONE) or supplemented with 3 g/d of mannanoligosaccharide product (MOS) or 4 g/d of live yeast product (YST) through weaning at 42 d. Twelve Holstein steers [n = 6 (per starter type); n = 4 (per supplement type)] were euthanized for collection and examination of rumen tissue samples. Dry matter intake (DMI) was greater for Holstein calves fed +CSH (0.90 kg/d) than -CSH (0.76 kg/d). Final body weight at 63 d of Holstein calves fed +CSH (75.8 kg) was greater than that of those fed -CSH (71.0 kg). Average daily gain (ADG) was greater for Holstein calves fed +CSH (0.58 kg/d) than -CSH (0.52 kg/d). However, Holstein calves fed -CSH had a greater feed efficiency (FE; 0.71 kg of ADG/kg of DMI) than those fed +CSH (0.65 kg of ADG/kg of DMI). Also, Holstein calves fed +CSH had narrower rumen papillae (0.32 mm) compared with those fed -CSH (0.41 mm). There were no significant effects of CSH on DMI, ADG, or FE in Jersey calves. There were no significant effects of YST or MOS on DMI, ADG, FE, or rumen papillae measures in Holstein calves. Jersey calves fed YST or MOS had greater final body weight at 63 d (51.2 kg and 51.0 kg, respectively) than calves fed NONE (47.5 kg). However, there were no significant effects of YST or MOS on DMI, ADG, or FE in Jersey calves.


Journal of Animal Science | 2009

Urea metabolism in beef steers fed tall fescue, orchardgrass, or gamagrass hays.

G. B. Huntington; K. Magee; A. Matthews; M. H. Poore; J. Burns

Two experiments were conducted to assess effects of endophyte treatments (Exp. 1), forage species (Exp. 2), and supplementation (Exp. 2) on urea production, excretion, and recycling in beef steers. Infusion of (15,15)N-urea and enrichment of urea in urine samples were used to calculate urea-N entry and recycling to the gut. Acceptably stable enrichment of (15)N-urea in urine was obtained after 50 h of intrajugular infusion of (15,15)N-urea, indicating that valid data on urea metabolism can be obtained from steers fed forages twice daily. After adjustment by covariance for differences in N intake among treatments in Exp. 1, steers fed endophyte-infected tall fescue had less (P<0.10) urea-N entry, recycling to the gut, and return of recycled urea-N to the ornithine cycle than those fed endophyte-free or novel endophyte-infected tall fescue. However, urea-N urinary excretion or return to the gut was similar among endophyte treatments when expressed as a proportion of urea-N entry. Urea-N entry and return to the gut in Exp. 2 was similar in steers fed gamagrass or orchardgrass hay after adjustment by covariance for differences in N intake. Less (P<0.01) urinary excretion, expressed as grams per day or as a proportion of urea-N entry, with gamagrass than with orchardgrass was associated with faster in vitro NDF-N digestion with gamagrass. Supplementation of gamagrass or orchardgrass with 1.76 kg/d of readily fermentable fiber and starch decreased urea entry (P<0.06) and urinary excretion of urea (P<0.01). Interactions between hay source and supplement reflected a greater response to supplementation for steers fed orchardgrass than for those fed gamagrass. After adjustment for differences among treatments in N supply, results of both experiments support the concept of improved N use in response to increased carbohydrate fermentability in the rumen, due either to inherent differences in forage fiber or to supplementation with readily fermentable carbohydrate (starch or fiber). Closer coordination of ruminal fermentation of carbohydrate and N sources provided greater and more efficient capture of dietary N as tissue protein in forage-fed steers.


Journal of Animal Science | 2011

Technical note: Use of near-infrared reflectance spectroscopy to predict intake and digestibility in bulls and steers.

G. B. Huntington; Leonard Es; J. C. Burns

Multiple fecal samples were collected from growing Angus bulls (264 to 419 kg of BW, 3.0 to 11.4 kg/d of DMI) to predict DMI of a corn-silage-based diet. Contemporaneous digestion trials were conducted with the same diet in 12 steers in yr 1 to 3 and bulls in yr 4. Near-infrared spectra from fecal samples (n = 730 from 282 growing bulls, n = 240 from 36 steers and 12 bulls for digestion trials) were obtained from dried and ground fecal samples, and modified partial least squares regression was used to develop equations to predict DMI and DM digestibility (DMD). Although mean predicted DMI of the growing bulls (7.52 ± 0.04 kg/d or 22.4 ± 0.1 g/kg of BW) was within 2% of mean measured DMI (7.63 ± 0.06 kg/d or 22.7 ± 0.1 g/kg of BW), the mean of paired differences within samples (0.11 ± 0.04 kg/d or 0.3 ± 0.1 g/kg of BW) was greater (P < 0.01) than zero. Measured DMD (72.3 ± 0.5%) was identical (P < 0.97) to predicted DMD (72.3 ± 0.5%), and DMD for bulls in the digestion trial did not differ (P < 0.27) from DMD for steers. Prediction of intake requires incorporation of some measured values from the set of fecal samples to be predicted. Lack of similarity between spectra of fecal grab samples from the growing bulls and daily fecal collection of steers and bulls in the digestion trials in this study indicates the need for further verification before prediction of DMD with fecal grab samples.


Journal of Animal Science | 2014

Intake estimation of horses grazing tall fescue (Lolium arundinaceum) or fed tall fescue hay

S.J. Chavez; P.D. Siciliano; G. B. Huntington

Six mature geldings of light horse breeds (557 ± 37 kg) were randomly assigned to a nontoxic endophyte-infected tall fescue hay (n = 3) or pasture treatment (n = 3) in a crossover design with 14-d periods to estimate DMI with alkane markers and to compare DMI of hay and pasture. When fed pasture, horses were housed in stalls from 0700 to 1300 h daily with access to water and then grazed pasture as a group in a single 0.4 ha pasture from 1300 to 0700 h. When fed hay, horses were maintained individually in stalls and given access to hay ad libitum from 1300 to 0700 h. All horses were individually fed 225 g oats twice daily treated with hexatriacontane (C36; external marker) and fecal samples were collected at 0700 and 1900 h on d 10 to 14. Fecal samples were mixed, dried, subsampled, and analyzed for tritriacontane (C33) and hentriacontane (C31) as internal markers and C36 as the external marker using gas chromatography. Estimated hay DMI using either C33 (1.75 kg/100 kg BW) or C31 (1.74 kg/100 kg BW) as internal alkane marker did not differ (P = 0.55) from measured hay DMI (1.70 kg/100 kg BW). Pasture DMI and DM digestibility (DMD) estimated with C31 (2.24 kg/100 kg BW and 53.1 g/100 g DMI) or with C33 (2.34 kg/100 kg BW and 56.2 g/100 g DMI) was greater (P = 0.05) than hay DMI and DMD (1.74 kg/100 kg BW and 44.5 g/100 g DMI). Intake estimated with C33 or C31 did not differ (P = 0.35) during hay or pasture. In conclusion, alkanes can be used to estimate pasture or hay DMI and DMD, and pasture intake exceeded hay intake when offered ad libitum.


Journal of Animal Science | 2014

Reduced supplementation frequency increased insulin-like growth factor 1 in beef steers fed medium quality hay and supplemented with a soybean hull and corn gluten feed blend

M. E. Drewnoski; G. B. Huntington; M. H. Poore

Reducing supplementation frequency in calf growing programs can reduce labor and equipment operation costs. However, little is understood about the metabolic response of ruminants to large fluctuations in nutrient intake. Eighteen Angus or Angus × Simmental cross steers (287 ± 20 kg and 310 ± 3.6 d of age) were individually fed 1 of 3 dietary treatments using Calan gates. Dietary treatments consisted of ad libitum hay and no supplement (NS), ad libitum hay and 1% BW (as-fed basis) of supplement daily (DS), or ad libitum hay and 2% BW (as-fed basis) of supplement every other day (SA). The supplement was 90% DM and contained (as-fed basis) 47% corn gluten feed, 47% soybean hulls, 2% feed grade limestone, and 4% molasses. Hay intake and ADG was measured over a 52-d period. Steers were then moved to individual tie stalls. Steers were fed at 0800 h and blood samples were collected every hour from 0600 to 1400 h and at 1800, 2200, and 0200 h over a 2-d period. Gains were increased (P < 0.01) by supplementation but did not differ (P = 0.68) due to supplementation frequency. Average daily gain was 0.45, 0.90, and 0.87 kg ·hd(-1)·d(-1) (SEM ± 0.05) for steers NS, DS, and SA, respectively. Across the 2-d supplementation cycle area under the concentration time curve (AUC) for plasma glucose was increased (P < 0.01) by supplementation but did not differ (P = 0.41) due to supplementation frequency. The AUC for plasma insulin was increased by supplementation (P < 0.01) but did not differ (P = 0.67) due to supplementation frequency. Plasma IGF-1 was increased (P = 0.01) by supplementation and was greater (P = 0.04) for steers supplemented SA than DS. Gains of steers supplemented with a soybean hull and corn gluten feed blend on alternate days did not differ from those supplemented daily suggesting the steers were able to efficiently utilize large boluses of nutrients fed every other day. The effect of less frequent supplementation on IGF-1 deserves further examination as this hormone has been shown to increase protein synthesis.


Journal of Animal Science | 2009

Determination of nitrogen balance in goats fed a meal produced from hydrolyzed spent hen hard tissues

S. R. Freeman; M. H. Poore; G. B. Huntington; T. F. Middleton; P. R. Ferket

To provide an economically viable and environmentally sound method for disposing of spent laying hens, we manufactured a proteinaceous meal from the hard tissue fraction of mechanically deboned laying hens (primarily feathers, bones, and connective tissue). We hydrolyzed the hard tissue and coextruded it with soybean hulls to create a novel feather and bone meal (FBM) containing 94.2% DM, 23.1% CP, 54.5% NDF, and 7.3% fat (DM basis). We evaluated the FBM in supplements for meat goats in which it provided 0, 20, 40, or 60% of the N added to the supplement compared with a negative control supplement with no added N source. The remainder of the N was contributed by soybean meal (SBM). Supplementation of N resulted in greater DMI than the negative control (P = 0.005), and DMI changed quadratically (P = 0.11) as FBM increased in the supplement. Digestibility of DM was similar in all diets, including the negative control (P > 0.10). Fiber digestibility increased linearly as dietary inclusion of FBM increased (P = 0.04 for NDF, P = 0.05 for ADF), probably as a result of the soybean hulls in the FBM. Nitrogen digestibility declined linearly from 60.5% with 0% FBM to 55.6% with 60% FBM (P = 0.07), but N retention changed by a quadratic function as FBM replaced SBM (P = 0.06). Negative control goats had less N digestibility (P < 0.001) and N retention (P = 0.008) than N-supplemented goats. Feather and bone meal had a greater proportion of ruminally undegradable B(3) protein than SBM (23.1 vs. 0.3% of CP, respectively). Ruminal VFA and pH were unaffected by replacing SBM with FBM, but supplying no source of N in the concentrate resulted in reduced total VFA in ruminal fluid (P = 0.04). Ruminal ammonia concentration increased quadratically (P = 0.07) as FBM increased, reflecting increased intake, and it was much less in unsupplemented goats (P < 0.001). Serum urea had less variation between 0 and 4 h after feeding in goats receiving 40 or 60% of added N as FBM in comparison with those receiving only SBM or 20% FBM. Feather and bone meal promoted a more stable rumen environment, possibly because of reduced rates of protein degradation within the rumen. A palatable by-product meal for ruminants can be made from spent laying hen hard tissue, one that supports N metabolism similar to that of traditional protein sources.


Biology of Growing Animals | 2005

Chapter 17 Splanchnic carbohydrate and energy metabolism in growing ruminants

N.B. Kristensen; G. B. Huntington; D. L. Harmon

Publisher Summary This chapter discusses some of the unique aspects of ruminant energy metabolism. The chapter focuses on supply of glucose, lactate, and short-chain fatty acids (SCFA) as sources of energy and their availability to body tissues. These interrelationships and growth responses based on dietary inputs are explained in the chapter. Ruminal fermentation describes the nutrient availability based on nutrient intake. The nutrient needs of the microflora and gut and the nutrient availability after these needs are evaluated. Glucose is extensively metabolized by gut tissues such that the net supply to the liver is often zero or negative. Small intestinal digestion can significantly increase glucose availability and metabolism. Lactate is derived from the diet, from ruminal bacterial metabolism and from endogenous metabolism. Because of its ubiquitous nature, lactate production from the gastrointestinal tract and viscera varies widely. Lactate is a major glucose precursor in ruminants, supplying 9–35% of hepatic glucose carbon. Short-chain fatty acids are the major currency of ruminant energy metabolism, accounting for 45% of digestible energy intake. Significant quantities of short-chain fatty acids are metabolized by ruminal epithelium; however, it appears that in the fed ruminant this epithelial metabolism is limited to butyrate and longer short-chain fatty acids.


Journal of Animal Science | 2006

Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle.

G. B. Huntington; D. L. Harmon; C. J. Richards

Collaboration


Dive into the G. B. Huntington's collaboration.

Top Co-Authors

Avatar

J. C. Burns

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

M. H. Poore

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. L. Archibeque

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Spears

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

A. Bach

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

A. Matthews

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

A.K. Sauvé

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

B.A. Hopkins

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge