Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Bragi Walters is active.

Publication


Featured researches published by G. Bragi Walters.


Nature Genetics | 2006

Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes

Struan F. A. Grant; Gudmar Thorleifsson; Inga Reynisdottir; Rafil Benediktsson; Andrei Manolescu; Jesus Sainz; Agnar Helgason; Hreinn Stefansson; Valur Emilsson; Anna Helgadottir; Unnur Styrkarsdottir; Kristinn P. Magnusson; G. Bragi Walters; Ebba Palsdottir; Thorbjorg Jonsdottir; Thorunn Gudmundsdottir; Arnaldur Gylfason; Jona Saemundsdottir; Robert L. Wilensky; Muredach P. Reilly; Daniel J. Rader; Yu Z. Bagger; Claus Christiansen; Vilmundur Gudnason; Gunnar Sigurdsson; Unnur Thorsteinsdottir; Jeffrey R. Gulcher; Augustine Kong; Kari Stefansson

We have previously reported suggestive linkage of type 2 diabetes mellitus to chromosome 10q. We genotyped 228 microsatellite markers in Icelandic individuals with type 2 diabetes and controls throughout a 10.5-Mb interval on 10q. A microsatellite, DG10S478, within intron 3 of the transcription factor 7–like 2 gene (TCF7L2; formerly TCF4) was associated with type 2 diabetes (P = 2.1 × 10−9). This was replicated in a Danish cohort (P = 4.8 × 10−3) and in a US cohort (P = 3.3 × 10−9). Compared with non-carriers, heterozygous and homozygous carriers of the at-risk alleles (38% and 7% of the population, respectively) have relative risks of 1.45 and 2.41. This corresponds to a population attributable risk of 21%. The TCF7L2 gene product is a high mobility group box–containing transcription factor previously implicated in blood glucose homeostasis. It is thought to act through regulation of proglucagon gene expression in enteroendocrine cells via the Wnt signaling pathway.


Nature | 2008

Genetics of gene expression and its effect on disease.

Valur Emilsson; Gudmar Thorleifsson; Bin Zhang; Amy Leonardson; Florian Zink; Jun Zhu; Sonia Carlson; Agnar Helgason; G. Bragi Walters; Steinunn Gunnarsdottir; Magali Mouy; Valgerdur Steinthorsdottir; Gudrun H. Eiriksdottir; Gyda Bjornsdottir; Inga Reynisdottir; Daniel F. Gudbjartsson; Anna Helgadottir; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Kristinn P. Magnusson; Hreinn Stefansson; Ragnheidur Fossdal; Kristleifur Kristjansson; Hjörtur Gislason; Tryggvi Stefansson; Björn Geir Leifsson; Unnur Thorsteinsdottir; John Lamb

Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.


Nature Genetics | 2009

Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity

Gudmar Thorleifsson; G. Bragi Walters; Daniel F. Gudbjartsson; Valgerdur Steinthorsdottir; Patrick Sulem; Anna Helgadottir; Unnur Styrkarsdottir; Solveig Gretarsdottir; Steinunn Thorlacius; Ingileif Jonsdottir; Thorbjorg Jonsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Frosti Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Torsten Lauritzen; Katja K. Aben; A.L.M. Verbeek; Nel Roeleveld; E. Kampman; Lisa R. Yanek; Lewis C. Becker; Laufey Tryggvadottir; Thorunn Rafnar; Diane M. Becker; Jeffrey R. Gulcher

Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P < 1.6 × 10−7. This includes previously identified variants close to or in the FTO, MC4R, BDNF and SH2B1 genes, in addition to variants at seven loci not previously connected with obesity.


Nature | 2012

Rate of de novo mutations and the importance of father/'s age to disease risk

Augustine Kong; Michael L. Frigge; Gisli Masson; Søren Besenbacher; Patrick Sulem; Gisli Magnusson; Sigurjon A. Gudjonsson; Asgeir Sigurdsson; Aslaug Jonasdottir; Adalbjorg Jonasdottir; Wendy S. W. Wong; Gunnar Sigurdsson; G. Bragi Walters; Stacy Steinberg; Hannes Helgason; Gudmar Thorleifsson; Daniel F. Gudbjartsson; Agnar Helgason; Olafur T. Magnusson; Unnur Thorsteinsdottir; Kari Stefansson

Mutations generate sequence diversity and provide a substrate for selection. The rate of de novo mutations is therefore of major importance to evolution. We conducted a study of genomewide mutation rate by sequencing the entire genomes of 78 Icelandic parent-offspring trios at high coverage. Here we show that in our samples, with an average father’s age of 29.7, the average de novo mutation rate is 1.20×10−8 per nucleotide per generation. Most strikingly, the diversity in mutation rate of single-nucleotide polymorphism (SNP) is dominated by the age of the father at conception of the child. The effect is an increase of about 2 mutations per year. After accounting for random Poisson variation, father’s age is estimated to explain nearly all of the remaining variation in the de novo mutation counts. These observations shed light on the importance of the father’s age on the risk of diseases such as schizophrenia and autism.


Nature Genetics | 2007

A variant in CDKAL1 influences insulin response and risk of type 2 diabetes.

Valgerdur Steinthorsdottir; Gudmar Thorleifsson; Inga Reynisdottir; Rafn Benediktsson; Thorbjorg Jonsdottir; G. Bragi Walters; Unnur Styrkarsdottir; Solveig Gretarsdottir; Valur Emilsson; Shyamali Ghosh; Adam Baker; Steinunn Snorradottir; Hjordis Bjarnason; Maggie C.Y. Ng; Torben Hansen; Yu Z. Bagger; Robert L. Wilensky; Muredach P. Reilly; Adebowale Adeyemo; Yuanxiu Chen; Jie Zhou; Vilmundur Gudnason; Guanjie Chen; Hanxia Huang; Kerrie Lashley; Ayo Doumatey; Wing Yee So; Ronald Cw Ma; Gitte Andersen; Knut Borch-Johnsen

We conducted a genome-wide association study for type 2 diabetes (T2D) in Icelandic cases and controls, and we found that a previously described variant in the transcription factor 7-like 2 gene (TCF7L2) gene conferred the most significant risk. In addition to confirming two recently identified risk variants, we identified a variant in the CDKAL1 gene that was associated with T2D in individuals of European ancestry (allele-specific odds ratio (OR) = 1.20 (95% confidence interval, 1.13–1.27), P = 7.7 × 10−9) and individuals from Hong Kong of Han Chinese ancestry (OR = 1.25 (1.11–1.40), P = 0.00018). The genotype OR of this variant suggested that the effect was substantially stronger in homozygous carriers than in heterozygous carriers. The ORs for homozygotes were 1.50 (1.31–1.72) and 1.55 (1.23–1.95) in the European and Hong Kong groups, respectively. The insulin response for homozygotes was approximately 20% lower than for heterozygotes or noncarriers, suggesting that this variant confers risk of T2D through reduced insulin secretion.


Nature Genetics | 2008

The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm

Anna Helgadottir; Gudmar Thorleifsson; Kristinn P. Magnusson; Solveig Gretarsdottir; Valgerdur Steinthorsdottir; Andrei Manolescu; Gregory T. Jones; Gabriel J.E. Rinkel; Jan D. Blankensteijn; Antti Ronkainen; Juha Jääskeläinen; Yoshiki Kyo; Guy M. Lenk; Natzi Sakalihasan; Konstantinos Kostulas; Anders Gottsäter; Andrea Flex; Hreinn Stefansson; Torben Hansen; Gitte Andersen; Shantel Weinsheimer; Knut Borch-Johnsen; Torben Jørgensen; Svati H. Shah; Arshed A. Quyyumi; Christopher B. Granger; Muredach P. Reilly; Harland Austin; Allan I. Levey; Viola Vaccarino

Recently, two common sequence variants on 9p21, tagged by rs10757278-G and rs10811661-T, were reported to be associated with coronary artery disease (CAD) and type 2 diabetes (T2D), respectively. We proceeded to further investigate the contributions of these variants to arterial diseases and T2D. Here we report that rs10757278-G is associated with, in addition to CAD, abdominal aortic aneurysm (AAA; odds ratio (OR) = 1.31, P = 1.2 × 10−12) and intracranial aneurysm (OR = 1.29, P = 2.5 × 10−6), but not with T2D. This variant is the first to be described that affects the risk of AAA and intracranial aneurysm in many populations. The association of rs10811661-T to T2D replicates in our samples, but the variant does not associate with any of the five arterial diseases examined. These findings extend our insight into the role of the sequence variant tagged by rs10757278-G and show that it is not confined to atherosclerotic diseases.


The New England Journal of Medicine | 2008

Multiple Genetic Loci for Bone Mineral Density and Fractures

Unnur Styrkarsdottir; Bjarni V. Halldórsson; Solveig Gretarsdottir; Daniel F. Gudbjartsson; G. Bragi Walters; Thorvaldur Ingvarsson; Thorbjorg Jonsdottir; Jona Saemundsdottir; Tuan V. Nguyen; Yu Z. Bagger; Jeffrey R. Gulcher; John A. Eisman; Claus Christiansen; Gunnar Sigurdsson; Augustine Kong; Unnur Thorsteinsdottir; Kari Stefansson

BACKGROUND Bone mineral density influences the risk of osteoporosis later in life and is useful in the evaluation of the risk of fracture. We aimed to identify sequence variants associated with bone mineral density and fracture. METHODS We performed a quantitative trait analysis of data from 5861 Icelandic subjects (the discovery set), testing for an association between 301,019 single-nucleotide polymorphisms (SNPs) and bone mineral density of the hip and lumbar spine. We then tested for an association between 74 SNPs (most of which were implicated in the discovery set) at 32 loci in replication sets of Icelandic, Danish, and Australian subjects (4165, 2269, and 1491 subjects, respectively). RESULTS Sequence variants in five genomic regions were significantly associated with bone mineral density in the discovery set and were confirmed in the replication sets (combined P values, 1.2x10(-7) to 2.0x10(-21)). Three regions are close to or within genes previously shown to be important to the biologic characteristics of bone: the receptor activator of nuclear factor-kappaB ligand gene (RANKL) (chromosomal location, 13q14), the osteoprotegerin gene (OPG) (8q24), and the estrogen receptor 1 gene (ESR1) (6q25). The two other regions are close to the zinc finger and BTB domain containing 40 gene (ZBTB40) (1p36) and the major histocompatibility complex region (6p21). The 1p36, 8q24, and 6p21 loci were also associated with osteoporotic fractures, as were loci at 18q21, close to the receptor activator of the nuclear factor-kappaB gene (RANK), and loci at 2p16 and 11p11. CONCLUSIONS We have discovered common sequence variants that are consistently associated with bone mineral density and with low-trauma fractures in three populations of European descent. Although these variants alone are not clinically useful in the prediction of risk to the individual person, they provide insight into the biochemical pathways underlying osteoporosis.


Nature Genetics | 2008

Many sequence variants affecting diversity of adult human height

Daniel F. Gudbjartsson; G. Bragi Walters; Gudmar Thorleifsson; Hreinn Stefansson; Bjarni V. Halldórsson; Pasha Zusmanovich; Patrick Sulem; Steinunn Thorlacius; Arnaldur Gylfason; Stacy Steinberg; Anna Helgadottir; Andres Ingason; Valgerdur Steinthorsdottir; Elinborg J Olafsdottir; Gudridur Olafsdottir; Thorvaldur Jonsson; Knut Borch-Johnsen; Torben Hansen; Gitte Andersen; Torben Jørgensen; Oluf Pedersen; Katja K. Aben; J. Alfred Witjes; Dorine W. Swinkels; Martin den Heijer; Barbara Franke; A.L.M. Verbeek; Diane M. Becker; Lisa R. Yanek; Lewis C. Becker

Adult human height is one of the classical complex human traits. We searched for sequence variants that affect height by scanning the genomes of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 African Americans. We then combined these results with previously published results from the Diabetes Genetics Initiative on 3,024 Scandinavians and tested a selected subset of SNPs in 5,517 Danes. We identified 27 regions of the genome with one or more sequence variants showing significant association with height. The estimated effects per allele of these variants ranged between 0.3 and 0.6 cm and, taken together, they explain around 3.7% of the population variation in height. The genes neighboring the identified loci cluster in biological processes related to skeletal development and mitosis. Association to three previously reported loci are replicated in our analyses, and the strongest association was with SNPs in the ZBTB38 gene.


Science | 2007

Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma.

Gudmar Thorleifsson; Kristinn P. Magnusson; Patrick Sulem; G. Bragi Walters; Daniel F. Gudbjartsson; Hreinn Stefansson; Thorlakur Jonsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Gerdur Stefansdottir; Gisli Masson; Gudmundur A. Hardarson; Hjorvar Petursson; Arsaell Arnarsson; Mehdi Motallebipour; Ola Wallerman; Claes Wadelius; Jeffrey R. Gulcher; Unnur Thorsteinsdottir; Augustine Kong; Fridbert Jonasson; Kari Stefansson

Glaucoma is a leading cause of irreversible blindness. A genome-wide search yielded multiple single-nucleotide polymorphisms (SNPs) in the 15q24.1 region associated with glaucoma. Further investigation revealed that the association is confined to exfoliation glaucoma (XFG). Two nonsynonymous SNPs in exon 1 of the gene LOXL1 explain the association, and the data suggest that they confer risk of XFG mainly through exfoliation syndrome (XFS). About 25% of the general population is homozygous for the highest-risk haplotype, and their risk of suffering from XFG is more than 100 times that of individuals carrying only low-risk haplotypes. The population-attributable risk is more than 99%. The product of LOXL1 catalyzes the formation of elastin fibers found to be a major component of the lesions in XFG.


Nature Genetics | 2009

A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke

Daniel F. Gudbjartsson; Hilma Holm; Solveig Gretarsdottir; Gudmar Thorleifsson; G. Bragi Walters; Gudmundur Thorgeirsson; Jeffrey R. Gulcher; Ellisiv B. Mathiesen; Inger Njølstad; Audhild Nyrnes; Tom Wilsgaard; Erin Mathiesen Hald; Kristian Hveem; Camilla Stoltenberg; Gayle Kucera; Tanya Stubblefield; Shannon Carter; Dan M. Roden; Maggie C.Y. Ng; Larry Baum; Wing Yee So; Ka Sing Wong; Juliana C.N. Chan; Christian Gieger; H-Erich Wichmann; Andreas Gschwendtner; Martin Dichgans; Klaus Berger; E. Bernd Ringelstein; Steve Bevan

We expanded our genome-wide association study on atrial fibrillation (AF) in Iceland, which previously identified risk variants on 4q25, and tested the most significant associations in samples from Iceland, Norway and the United States. A variant in the ZFHX3 gene on chromosome 16q22, rs7193343-T, associated significantly with AF (odds ratio OR = 1.21, P = 1.4 × 10−10). This variant also associated with ischemic stroke (OR = 1.11, P = 0.00054) and cardioembolic stroke (OR = 1.22, P = 0.00021) in a combined analysis of five stroke samples.

Collaboration


Dive into the G. Bragi Walters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge