Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. C. Roberts is active.

Publication


Featured researches published by G. C. Roberts.


Nature | 2007

Warming trends in Asia amplified by brown cloud solar absorption

V. Ramanathan; Muvva Venkata Ramana; G. C. Roberts; Dohyeong Kim; Craig Corrigan; Chul Eddy Chung; David Winker

Atmospheric brown clouds are mostly the result of biomass burning and fossil fuel consumption. They consist of a mixture of light-absorbing and light-scattering aerosols and therefore contribute to atmospheric solar heating and surface cooling. The sum of the two climate forcing terms—the net aerosol forcing effect—is thought to be negative and may have masked as much as half of the global warming attributed to the recent rapid rise in greenhouse gases. There is, however, at least a fourfold uncertainty in the aerosol forcing effect. Atmospheric solar heating is a significant source of the uncertainty, because current estimates are largely derived from model studies. Here we use three lightweight unmanned aerial vehicles that were vertically stacked between 0.5 and 3 km over the polluted Indian Ocean. These unmanned aerial vehicles deployed miniaturized instruments measuring aerosol concentrations, soot amount and solar fluxes. During 18 flight missions the three unmanned aerial vehicles were flown with a horizontal separation of tens of metres or less and a temporal separation of less than ten seconds, which made it possible to measure the atmospheric solar heating rates directly. We found that atmospheric brown clouds enhanced lower atmospheric solar heating by about 50 per cent. Our general circulation model simulations, which take into account the recently observed widespread occurrence of vertically extended atmospheric brown clouds over the Indian Ocean and Asia, suggest that atmospheric brown clouds contribute as much as the recent increase in anthropogenic greenhouse gases to regional lower atmospheric warming trends. We propose that the combined warming trend of 0.25 K per decade may be sufficient to account for the observed retreat of the Himalayan glaciers.


Global Biogeochemical Cycles | 1999

A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month

A. J. Kettle; Meinrat O. Andreae; D. Amouroux; T. W. Andreae; T. S. Bates; H. Berresheim; Heinz Bingemer; R. Boniforti; M. A. J. Curran; G. R. DiTullio; G. B. Jones; M. D. Keller; Ronald P. Kiene; C. Leck; Maurice Levasseur; Gill Malin; M. Maspero; Patricia A. Matrai; A. R. McTaggart; N. Mihalopoulos; B. C. Nguyen; A. Novo; J. P. Putaud; S. Rapsomanikis; G. C. Roberts; G. Schebeske; S. Sharma; Rafel Simó; R. Staubes; Suzanne M. Turner

A database of 15,617 point measurements of dimethylsulfide (DMS) in surface waters along with lesser amounts of data for aqueous and particulate dimethylsulfoniopropionate concentration, chlorophyll concentration, sea surface salinity and temperature, and wind speed has been assembled. The database was processed to create a series of climatological annual and monthly 1°×1° latitude-longitude squares of data. The results were compared to published fields of geophysical and biological parameters. No significant correlation was found between DMS and these parameters, and no simple algorithm could be found to create monthly fields of sea surface DMS concentration based on these parameters. Instead, an annual map of sea surface DMS was produced using an algorithm similar to that employed by Conkright et al. [1994]. In this approach, a first-guess field of DMS sea surface concentration measurements is created and then a correction to this field is generated based on actual measurements. Monthly sea surface grids of DMS were obtained using a similar scheme, but the sparsity of DMS measurements made the method difficult to implement. A scheme was used which projected actual data into months of the year where no data were otherwise present.


Aerosol Science and Technology | 2005

A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements

G. C. Roberts; Athanasios Nenes

We have addressed the need for improved measurements of cloud condensation nuclei (CCN) by developing a continuous-flow instrument that provides in situ measurements of CCN. The design presented in this article can operate between 0.1 and 3% supersaturation, at sampling rates sufficient for airborne operation. The design constitutes a cylindrical continuous-flow thermal-gradient diffusion chamber employing a novel technique of generating a supersaturation: by establishing a constant streamwise temperature gradient so that the difference in water vapor and thermal diffusivity yield a quasi-uniform centerline supersaturation. Our design maximizes the growth rate of activated droplets, thereby enhancing the performance of the instrument. The temperature gradient and the flow through the column control the supersaturation and may be modified to retrieve CCN spectra. The principle of the CCN instrument was validated in controlled laboratory experiments at different operating conditions using a monodisperse aerosols with known composition and size. These experiments yield sharp activation curves, even for those kinetically limited particles that have not exceeded their critical diameter. The performance of the CCN instrument was also assessed using polydisperse laboratory-generated aerosol of known composition and size distributions similar to ambient particulate matter. In all tests, the measured CCN concentrations compared well with predicted values and highlight the instruments ability to measure CCN at various size distributions. The full potential of the new design has yet to be explored; however, model simulations suggest that direct measurements in the climatically important range of supersaturations of less than 0.1% (certainly down to 0.07%) are possible. The new instrument clearly offers a unique level of design simplicity, robustness, and flexilibity (temperature control, large range of supersaturations without flow reversal, and multiple configurations for same supersaturation) necessary for atmospheric studies.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

Kimberly A. Prather; Timothy H. Bertram; Vicki H. Grassian; Grant B. Deane; M. Dale Stokes; Paul J. DeMott; Lihini I. Aluwihare; Brian Palenik; Farooq Azam; John H. Seinfeld; Ryan C. Moffet; Mario J. Molina; Christopher D. Cappa; Franz M. Geiger; G. C. Roberts; Lynn M. Russell; Andrew P. Ault; Jonas Baltrusaitis; Douglas B. Collins; C. E. Corrigan; Luis A. Cuadra-Rodriguez; Carlena J. Ebben; Sara Forestieri; Timothy L. Guasco; Scott Hersey; Michelle J. Kim; William Lambert; R. L. Modini; Wilton Mui; Byron E. Pedler

The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.


Reviews of Geophysics | 2010

Sources and properties of Amazonian aerosol particles

Scot T. Martin; Meinrat O. Andreae; Paulo Artaxo; Darrel Baumgardner; Qi Chen; Allen H. Goldstein; Alex Guenther; Colette L. Heald; Olga L. Mayol-Bracero; Peter H. McMurry; Theotonio Pauliquevis; Ulrich Pöschl; Kimberly A. Prather; G. C. Roberts; Scott R. Saleska; M. A. F. Silva Dias; D. V. Spracklen; Erik Swietlicki; Ivonne Trebs

This review provides a comprehensive account of what is known presently about Amazonian aerosol particles and concludes by formulating outlook and priorities for further research. The review is organized to follow the life cycle of Amazonian aerosol particles. It begins with a discussion of the primary and secondary sources relevant to the Amazonian particle burden, followed by a presentation of the particle properties that characterize the mixed populations present over the Amazon Basin at different times and places. These properties include number and mass concentrations and distributions, chemical composition, hygroscopicity, and cloud nucleation ability. The review presents Amazonian aerosol particles in the context of natural compared to anthropogenic sources as well as variability with season and meteorology. This review is intended to facilitate an understanding of the current state of knowledge on Amazonian aerosol particles specifically and tropical continental aerosol particles in general and thereby to enhance future research in this area. Copyright


Journal of Geophysical Research | 2002

Sensitivity of CCN spectra on chemical and physical properties of aerosol: A case study from the Amazon Basin

G. C. Roberts; Paulo Artaxo; Jingchuan Zhou; Erik Swietlicki; Meinrat O. Andreae

Organic material, about half of which is water soluble, constitutes nearly 80% of the wet-season aerosol mass in the Amazon Basin, while soluble inorganic salts (predominantly ammonium bisulfate) represent about 15%. A detailed analysis of number distributions and the size-dependent chemical composition of the aerosol indicates that, in principle, the sulfate fraction could account for most of the cloud condensation nuclei (CCN) activity. Uncertainty about the chemical speciation of the water-soluble organic component precludes a rigorous analysis of its contribution to nucleation activity. Within reasonable assumptions, we can, however, predict a similar contribution of the organic component to CCN activity as that from sulfate. Because of the nonlinear dependence of droplet nucleation behavior on solute amount, the nucleation activity cannot be attributed uniquely to the inorganic or organic fractions. The role of water-soluble organic compounds as surfactants, however, may be significant (especially in the case of biomass-burning aerosol) and more field measurements are needed to quantify their effects on the surface tension of ambient aerosols. The parametric dependence of the CCN spectra on the physical and chemical properties of the aerosol show that the number distribution, soluble content of the aerosol, and surface tension effects all play an important role in determining CCN spectra. (Less)


Geophysical Research Letters | 2001

Cloud condensation nuclei in the Amazon Basin: “marine” conditions over a continent?

G. C. Roberts; Meinrat O. Andreae; Jingchuan Zhou; Paulo Artaxo

Cloud condensation nuclei (CCN) are linked to radiative forcing, precipitation, and cloud structure; yet, their role in tropical climates remains largely unknown. CCN concentrations (NCCN) measured during the wet season in the Amazon Basin were surprisingly low (mean NCCN at 1% supersaturation: 267±132 cm−3) and resembled concentrations more typical of marine locations than most continental sites. At low background CCN concentrations, cloud properties are more sensitive to an increase in NCCN. Therefore, enhanced aerosol emissions due to human activity in the Amazon Basin may have a stronger impact on climate than emissions in other continental regions. In spite of the large organic fraction in the Amazonian aerosol, a detailed analysis of number distributions and size-dependent chemical composition indicates that sulfate plays an important role in CCN activity.


Journal of Geophysical Research | 2001

Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)- Cooperative LBA Regional Experiment (CLAIRE) in March 1998

P. Formenti; Meinrat O. Andreae; L. Lange; G. C. Roberts; Jan Cafmeyer; I Rajta; Willy Maenhaut; Bn Holben; Paulo Artaxo; J. Lelieveld

Advection of Saharan dust was observed via chemical and optical measurements during March 1998 in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE)-98 experiment. In Brazil the dust outbreak produced an increase of a factor of 3 in the daily mean mass concentration (up to 26±7 μg m−3) of particles smaller than 10 μm equivalent aerodynamic diameter (EAD), and in the daily mean aerosol particle scattering coefficient σs (up to 26±8 Mm−1 STP, ambient humidity). Background levels of aerosol scattering (ambient) were σs ∼ 10 Mm−1. The effect of dust advection was evident for all major crustal elements (Al, Si, Ca, Ti, Mn, and Fe), as well as the sea-salt elements (Na, Cl, and S), as the dust layer was transported at low altitude (below 800 hPa). Coarse P and organic carbon (OC) concentrations were not influenced by the occurrence of dust, and were mainly emitted by the rain forest. The dry scattering mass efficiency of dust (particles smaller than 10 μm EAD) was estimated to be between 0.65 (±0.06) and 0.89 (±0.08) m2 g−1. Airborne profiles of aerosol scattering showed two distinct types of vertical structure in the dust layer over Suriname, either vertically uniform (15, 26 March), or plume-like (25 March). Dust layers extended generally up to 700 hPa, while scattering layers occasionally encountered at higher altitudes resulted from smoke emitted by biomass burning in Venezuela and Colombia. Observations in South America were supported by measurements in Israel and Tenerife (Canary Islands), where the dust outbreaks were also detected.


Journal of Geophysical Research | 2004

Aerosol-cloud drop concentration closure in warm cumulus

William C. Conant; Timothy M. VanReken; Tracey A. Rissman; Varuntida Varutbangkul; Haflidi H. Jonsson; Athanasios Nenes; Jose L. Jimenez; A. E. Delia; Roya Bahreini; G. C. Roberts; John H. Seinfeld

Our understanding of the activation of aerosol particles into cloud drops during the formation of warm cumulus clouds presently has a limited observational foundation. Detailed observations of aerosol size and composition, cloud microphysics and dynamics, and atmospheric thermodynamic state were collected in a systematic study of 21 cumulus clouds by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft during NASAs Cirrus Regional Study of Tropical Anvils and Cirrus Layers–Florida Area Cirrus Experiment (CRYSTAL-FACE). An “aerosol-cloud” closure study was carried out in which a detailed cloud activation parcel model, which predicts cloud drop concentration using observed aerosol concentration, size distribution, cloud updraft velocity, and thermodynamic state, is evaluated against observations. On average, measured droplet concentration in adiabatic cloud regions is within 15% of the predictions. This agreement is corroborated by independent measurements of aerosol activation carried out by two cloud condensation nucleus (CCN) counters on the aircraft. Variations in aerosol concentration, which ranged from 300 to 3300 cm^(−3), drives large microphysical differences (250–2300 cm^(−3)) observed among continental and maritime clouds in the South Florida region. This is the first known study in which a cloud parcel model is evaluated in a closure study using a constraining set of data collected from a single platform. Likewise, this is the first known study in which relationships among aerosol size distribution, CCN spectrum, and cloud droplet concentration are all found to be consistent with theory within experimental uncertainties much less than 50%. Vertical profiles of cloud microphysical properties (effective radius, droplet concentration, dispersion) clearly demonstrate the boundary layer aerosols effect on cloud microphysics throughout the lowest 1 km of cloud depth. Onboard measurements of aerosol hygroscopic growth and the organic to sulfate mass ratio are related to CCN properties. These chemical data are used to quantify the range of uncertainty associated with the simplified treatment of aerosol composition assumed in the closure study.


Journal of Geophysical Research | 2003

Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL‐FACE

Timothy M. VanReken; Tracey A. Rissman; G. C. Roberts; Varuntida Varutbangkul; Haflidi H. Jonsson; John H. Seinfeld

concentrations were 233 cm 3 (at S = 0.2%) and 371 cm 3 (at S = 0.85%). Three flights during the experiment differed from this general trend; the aerosol sampled during the two flights on 18 July was more continental in character, and the observations on 28 July indicate high spatial variability and periods of very high aerosol concentrations. This study also includes a simplified aerosol/CCN closure analysis. Aerosol size distributions were measured simultaneously with the CCN observations, and these data are used to

Collaboration


Dive into the G. C. Roberts's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paulo Artaxo

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

John H. Seinfeld

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athanasios Nenes

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kimberly A. Prather

Scripps Institution of Oceanography

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. E. Corrigan

University of California

View shared research outputs
Top Co-Authors

Avatar

K. Sellegri

Blaise Pascal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge