G. Di Achille
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Di Achille.
Geophysical Research Letters | 2010
Dennis Reiss; J. Raack; Angelo Pio Rossi; G. Di Achille; Harald Hiesinger
In this study we report about the first in-situ analysis of terrestrial dust devil tracks (DDTs) observed in the Turpan depression desert in northwestern China. Passages of active dust devils remove a thin layer of fine grained material (< ∼63 μm), cleaning the upper surface of coarse sands (0.5–1 mm). This erosional process changes the photometric properties of the upper surface causing the albedo differences within the track to the surroundings. Measurements imply that a removal of an equivalent layer thickness of ∼2 μm is sufficient to form the dark dust devil tracks. Our terrestrial results are in agreement with the mechanism proposed by Greeley et al. (2005) for the formation of DDTs on Mars.
Geophysical Research Letters | 2016
F. Esposito; R. Molinaro; C. Popa; C. Molfese; F. Cozzolino; L. Marty; K. Taj‐Eddine; G. Di Achille; G. Franzese; S. Silvestro; G. G. Ori
Mineral dust particles represent the most abundant component of atmospheric aerosol in terms of dry mass. They play a key role in climate and climate change, so the study of their emission processes is of utmost importance. Measurements of dust emission into the atmosphere are scarce, so that the dust load is generally estimated using models. It is known that the emission process can generate strong atmospheric electric fields. Starting from the data we acquired in the Sahara desert, here, we show for the first time that depending on the relative humidity conditions, electric fields contribute to increase up to a factor of 10 the amount of particles emitted into the atmosphere. This means that electrical forces and humidity are critical quantities in the dust emission process and should be taken into account in climate and circulation models to obtain more realistic estimations of the dust load in the atmosphere.
Journal of Geophysical Research | 2007
F. Borraccini; G. Di Achille; G. G. Ori; F. C. Wezel
[1] The eastern margin of the Thaumasia Plateau (EMTP) is characterized by a diversity of tectonic features, which recorded its complex, and still controversial, tectonic history. A detailed structural survey and analyses have been carried out in order to assess the kinematics and relative age of the main deformational events. Combining results from statistics of lineament orientations and density of fault length for each geologic unit and taking into account crosscutting relationships among tectonic structures, three main deformational events have been recognized. The early stage of the tectonic evolution of EMTP is recorded by Noachian units at the southern edge of Melas Dorsa and is represented by N-S oriented grabens sutured by Early Hesperian formations. Starting from Late Noachian, the extensional stress field became NE-SW oriented and resulted in the formation of NW-SE striking sets of grabens. At the boundary between Noachian and Hesperian, the most important change in tectonic regime occurred. The Hesperian tectonics are characterized by an E-W shortening possibly related to an eastward motion of the Thaumasia Plateau. This tectonic phase likely produced a N-S-oriented wrinkle ridges as well as regional folds and thrust faults. E-W-oriented preexisting tectonic lineaments could have been reactivated forming regional transfer zones. In this scenario, Coprates Rise, Melas Dorsa, and Thaumasia Ridge could be interpreted as mountain belts resulting from buckling and thrust faulting of the eastern and southern margins of the Thaumasia plateau. The proto-Valles Marineris could have experienced a left-lateral component of displacement and played a role of a transfer shear zone.
Journal of Geophysical Research | 2015
S. Silvestro; D. A. Vaz; G. Di Achille; I. C. Popa; F. Esposito
We present evidence for a complex, multigenerational bed form pattern and a new type of wind streak (the ripple streak) in the landing site ellipse of the 2016 ExoMars Entry descent and landing Demonstrator Module (EDM) in Meridiani Planum (Mars). We identified three main groups of bright-toned bed forms. Population 3, represented by NE-SW trending bed forms located inside craters, was emplaced by winds coming from the NW or the SE. Population 2, emplaced by strong easterlies, formed by intracrater transverse aeolian ridges (TARs) and N-S trending megaripples (plains ripples). Population 1 consists of a relict bed form pattern emplaced by winds coming from the north or south. Alternatively, population 1 can represent a sand ribbon pattern that formed together with the plain ripples. We also report the presence of a new type of wind streak, the ripple streak, which is formed by the population 2 bed forms clustered in the wake zone of impact craters. Based on the results of this work, we now know the EDM module is set to land in a complex aeolian environment. Data from the Dust Characterization, Risk Assessment, and Environment Analyser on the Martian Surface onboard the EDM can help to better decipher the wind regime in Meridiani Planum.
Geological Society, London, Special Publications | 2015
Lorenza Giacomini; Matteo Massironi; S. Marchi; Caleb I. Fassett; G. Di Achille; G. Cremonese
Abstract The tectonic evolution of Mercury is dominated at a global scale by contractional features such as lobate scarps that are widely distributed across the planet. These structures are thought to be the consequence of the secular cooling of Mercury. Therefore, dating these features is essential to place constraints on the timing of planetary cooling, which is important for understanding the thermal evolution of Mercury. In this work, we date an extended thrust system, which we term the Blossom Thrust System, located between 80°E and 100°E, and 30°N and 15°S, and which consists of several individual lobate scarps exhibiting a north–south orientation and a westward vergence. The age of the system was determined using several different methods. Traditional stratigraphic analysis was accompanied by crater counting of units that overlap the thrust system and by using the buffered crater-counting technique, allowing us to determine an absolute model age for the tectonic feature. These complementary methods give consistent results, implying that activity on the thrust ended between 3.5 and 3.7 Ga, depending on the adopted absolute-age model. These data provide an important insight into this portion of Mercurys crust, which may have implications for models of the thermal evolution of the planet as a whole.
Geological Society, London, Special Publications | 2015
Matteo Massironi; G. Di Achille; David A. Rothery; Valentina Galluzzi; Lorenza Giacomini; Sabrina Ferrari; M. Zusi; G. Cremonese; P. Palumbo
Abstract At a global scale, Mercury is dominated by contractional features manifested as lobate scarps, wrinkle ridges and high-relief ridges. Here, we show that some of these features are associated with strike-slip kinematic indicators, which we identified using flyby and orbital Mercury Dual Imaging System (MDIS) data and digital terrain models. We recognize oblique-shear kinematics along lobate scarps and high-relief ridges by means of (1) map geometries of fault patterns (frontal thrusts bordered by lateral ramps, strike-slip duplexes, restraining bends); (2) structural morphologies indicating lateral shearing (en echelon folding, pop-ups, pull-aparts); and (3) estimates of offsets based on displaced crater rims and differences in elevation between pop-up structures and pull-apart basins and their surroundings. Transpressional faults, documented across a wide range of latitudes, are found associated with reactivated rims of ancient buried basins and, in most cases, linked to frontal thrusts as lateral ramps hundreds of kilometres long. This latter observation suggests stable directions of tectonic transport over wide regions of Mercurys surface. In contrast, global cooling would imply an overall isotropic contraction with limited processes of lateral shearing induced by pre-existent lithospheric heterogeneities. Mantle convection therefore may have played an important role during the tectonic evolution of Mercury.
Journal of Maps | 2016
Valentina Galluzzi; Laura Guzzetta; Luigi Ferranti; G. Di Achille; David A. Rothery; P. Palumbo
ABSTRACT Mercury’s quadrangle H02 ‘Victoria’ is located in the planet’s northern hemisphere and lies between latitudes 22.5° N and 65° N, and between longitudes 270° E and 360° E. This quadrangle covers 6.5% of the planet’s surface with a total area of almost 5 million km2. Our 1:3,000,000-scale geologic map of the quadrangle was produced by photo-interpretation of remotely sensed orbital images captured by the MESSENGER spacecraft. Geologic contacts were drawn between 1:300,000 and 1:600,000 mapping scale and constitute the boundaries of intercrater, intermediate and smooth plains units; in addition, three morpho-stratigraphic classes of craters larger than 20 km were mapped. The geologic map reveals that this area is dominated by Intercrater Plains encompassing some almost-coeval, probably younger, Intermediate Plains patches and interrupted to the north-west, north-east and east by the Calorian Northern Smooth Plains. This map represents the first complete geologic survey of the Victoria quadrangle at this scale, and an improvement of the existing 1:5,000,000 Mariner 10-based map, which covers only 36% of the quadrangle.
Planetary and Space Science | 2009
Ernst Hauber; Klaus Gwinner; Maarten G. Kleinhans; Dennis Reiss; G. Di Achille; G.-G. Ori; Frank Scholten; Lucia Marinangeli; R. Jaumann; G. Neukum
Icarus | 2012
G. Di Achille; C. Popa; Matteo Massironi; E. Mazzotta Epifani; M. Zusi; G. Cremonese; P. Palumbo
Geophysical Research Letters | 2006
G. Di Achille; G. G. Ori; Dennis Reiss; Ernst Hauber; Klaus Gwinner; G. Michael; G. Neukum