G. F. Carnevale
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. F. Carnevale.
Journal of Mathematical Physics | 1983
John Weiss; Michael Tabor; G. F. Carnevale
In this paper we define the Painleve property for partial differential equations and show how it determines, in a remarkably simple manner, the integrability, the Backlund transforms, the linearizing transforms, and the Lax pairs of three well‐known partial differential equations (Burgers’ equation, KdV equation, and the modified KdV equation). This indicates that the Painleve property may provide a unified description of integrable behavior in dynamical systems (ordinary and partial differential equations), while, at the same time, providing an efficient method for determining the integrability of particular systems.
Journal of Fluid Mechanics | 1987
G. F. Carnevale; Jorgen S. Frederiksen
The stability properties and stationary statistics of inviscid barotropic flow over topography are examined. Minimum enstrophy states have potential vorticity proportional to the streamfunction and are nonlinearly stable ; correspondingly, canonical equilibrium based on energy and enstrophy conservation predicts mean potential vorticity is proportional to the mean streamfunction. It is demonstrated that in the limit of infinite resolution the canonical mean state is statistically sharp, that is, without any eddy energy on any scale, and is identical to the nonlinearly stable minimum enstrophy state. Special attention is given to the interaction between small scales and a dynamically evolving large-scale flow. On the b-plane, these stable flows have a westward large-scale component. Possibilities for a general relation between inviscid statistical equilibrium and nonlinear stability theory are examined.
Journal of Fluid Mechanics | 1991
G. F. Carnevale; R. C. Kloosterziel; G. J. F. van Heijst
A small-scale cyclonic vortex in a relatively broad valley tends to climb up and out of the valley in a cyclonic spiral about the centre, and when over a relatively broad hill it tends to climb toward the top in an anticyclonic spiral around the peak. This phenomenon is examined here through two-dimensional numerical simulations and rotating-tank experiments. The basic mechanism involved is shown to be the same as that which accounts for the northwest propagation of cyclones on a β-plane. This inviscid nonlinear effect is also shown to be responsible for the observed translationary motion of barotropic vortices in a free-surface rotating tank. The behaviour of isolated vortices is contrasted with that of vortices with non-vanishing circulation.
Journal of Fluid Mechanics | 1994
G. F. Carnevale; R. C. Kloosterziel
Laboratory observations and numerical simulations reveal that, in addition to monopoles, dipoles and tripoles, yet another stable coherent vortex may emerge from unstable isolated circular vortices. This new vortex is the finite-amplitude result of the growth of an azimuthal wavenumber-3 perturbation. It consists of a triangular core of single-signed vorticity surrounded by three semicircular satellites of oppositely signed vorticity. The stability of this triangular vortex is analysed through a series of high-resolution numerical simulations and by an investigation of point-vortex models. This new compound vortex rotates about its centre and is stable to small perturbations. If perturbed strongly enough, it undergoes an instability in which two of the outer satellites merge, resulting in the formation of an axisymmetric tripole, which subsequently breaks down into either a pair of dipoles or a dipole plus a monopole. The growth of higher-azimuthal-wavenumber perturbations leads to the formation of more intricate compound vortices with cores in the shape of squares, pentagons, etc. However, numerical simulations show that these vortices are unstable, which agrees with results from point-vortex models.
Journal of Fluid Mechanics | 2007
R. C. Kloosterziel; G. F. Carnevale; P. Orlandi
The unfolding of inertial instability in intially barotropic vortices in a uniformly rotating and stratified fluid is studied through numerical simulations. The vortex dynamics during the instability is examined in detail. We demonstrate that the instability is stabilized via redistribution of angular momentum in a way that produces a new equilibrated barotropic vortex with a stable velocity profile. Based on extrapolations from the results of a series of simulations in which the Reynolds number and strength of stratification are varied, we arrive at a construction based on angular momentum mixing that predicts the infinite-Reynolds-number form of the equilibrated vortex toward which inertial instability drives an unstable vortex. The essential constraint is conservation of total absolute angular momentum. The construction can be used to predict the total energy loss during the equilibration process. It also shows that the equilibration process can result in anticyclones that are more susceptible to horizontal shear instabilities than they were initially, a phenomenon previously observed in laboratory and numerical studies.
Journal of Physics A | 1981
G. F. Carnevale; U Frisch; Rick Salmon
It is demonstrated that the second-order Markovian closures frequently used in turbulence theory imply an H theorem for inviscid flow with an ultraviolet spectral cut-off. That is, from the inviscid closure equations, it follows that a certain functional of the energy spectrum (namely entropy) increases monotonically in time to a maximum value at absolute equilibrium. This is shown explicitly for isotropic homogeneous flow in dimensions d>or=2, and then a generalised theorem which covers a wide class of systems of current interest is presented. It is shown that the H theorem for closure can be derived from a Gibbs-type H theorem for the exact non-dissipative dynamics.
Journal of Turbulence | 2008
Stefania Espa; G. F. Carnevale; Antonio Cenedese; M. Mariani
Freely decaying quasi-2D turbulence under the influence of a meridional variation of the Coriolis parameter f (β effect) is experimentally and numerically modelled. The experimental flow is generated in a rotating electromagnetic cell where the variation of f is approximated by a nearly equivalent topographical effect. In the presence of a high β effect, the initial disordered vorticity field evolves to form a weak polar anticyclonic circulation surrounded by a cyclonic zonal jet demonstrating the preferential transfer of energy towards zonal motions. In agreement with theoretical predictions, the energy spectrum becomes peaked near the Rhines wave number with a steep fall-off beyond, indicating the presence of a soft barrier to the energy transfer towards larger scales. DNS substantially confirmed the experimental observations.
Geophysical and Astrophysical Fluid Dynamics | 1982
G. F. Carnevale; Paul C. Martin
Abstract A derivation of two-point Markovian closure is presented in classical statistical field theory formalism. It is emphasized that the procedures used in this derivation are equivalent to those employed in the quantum statistical field theory derivation of the Boltzmann equation. Application of these techniques to the study of two-dimensional flow on a β-plane yields a quasi-homogeneous, quasi-stationary transport equation and a renormalized dispersion relation for Rossby waves
Journal of Fluid Mechanics | 2001
G. F. Carnevale; Marco Briscolini; P. Orlandi
The buoyancy range, which represents a transition from large-scale wave-dominated motions to small-scale turbulence in the oceans and the atmosphere, is investigated through large-eddy simulations. The model presented here uses a continual forcing based on large-scale standing internal waves and has a spectral truncation in the isotropic inertial range. Evidence is presented for a break in the energy spectra from the anisotropic k -3 buoyancy range to the small-scale k -5/3 isotropic inertial range. Density structures that form during wave breaking and periods of high strain rate are analysed. Elongated vertical structures produced during periods of strong straining motion are found to collapse in the subsequent vertically compressional phase of the strain resulting in a zone or patch of mixed fluid.
Physics of Fluids | 1992
G. F. Carnevale; James C. McWilliams; Y. Pomeau; Jeffrey B. Weiss; W. R. Young
A recently proposed scaling theory of two‐dimensional turbulent decay, based on the evolutionary pathway of successive mergers of coherent vortices, is used to predict the rate and end state of the evolution. These predictions differ from those based on the selective‐decay hypothesis and traditional ideas of spectrum evolution, and they are in substantially better agreement with numerical solutions at large Reynolds number.