Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. F. Swadling is active.

Publication


Featured researches published by G. F. Swadling.


Physics of Plasmas | 2010

Generation of episodic magnetically driven plasma jets in a radial foil Z-pinch

Francisco Suzuki-Vidal; S. V. Lebedev; S. N. Bland; G. Hall; G. F. Swadling; A. J. Harvey-Thompson; Jeremy P. Chittenden; A. Marocchino; A. Ciardi; Adam Frank; Eric G. Blackman; S. C. Bott

We present experimental results of the formation of magnetically driven plasma jets, showing for the first time a way of producing episodic jet/ouflows in the laboratory. The jets are produced using a 6.5 μm thick aluminum disk (a radial foil), which is subjected to the 1 MA, 250 ns current pulse from the MAGPIE generator [I. H. Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]. The early time motion of the foil is characterized by the bulk motion of the mass due to the magnetic pressure, together with the formation of a surface plasma following the direction of the J×B force. A low density plasma fills the region above the foil preceding the formation of subsequent magnetically driven jets on the axis of expanding magnetic bubbles. The outflows emerge in timescales of ∼30–40 ns and their episodic nature is the result of current reconnection in the foil, aided by the formation of current-driven instabilities in the jet and the distribution of mass available from the foil. The additional inductance due ...


Physics of Plasmas | 2013

Oblique shock structures formed during the ablation phase of aluminium wire array z-pinches

G. F. Swadling; S. V. Lebedev; N. Niasse; J. P. Chittenden; G. Hall; F. Suzuki-Vidal; G. Burdiak; A. J. Harvey-Thompson; S. N. Bland; P. de Grouchy; E. Khoory; L. Pickworth; J. Skidmore; L. Suttle

A series of experiments has been conducted in order to investigate the azimuthal structures formed by the interactions of cylindrically converging plasma flows during the ablation phase of aluminium wire array Z pinch implosions. These experiments were carried out using the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. The main diagnostic used in this study was a two-colour, end-on, Mach-Zehnder imaging interferometer, sensitive to the axially integrated electron density of the plasma. The data collected in these experiments reveal the strongly collisional dynamics of the aluminium ablation streams. The structure of the flows is dominated by a dense network of oblique shock fronts, formed by supersonic collisions between adjacent ablation streams. An estimate for the range of the flow Mach number (M = 6.2-9.2) has been made based on an analysis of the observed shock geometry. Combining this measurement with previously published Thomson Scattering measurements of the plasma flow velocity by H...


Review of Scientific Instruments | 2014

Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

G. F. Swadling; Sergey V. Lebedev; G. Hall; S. Patankar; N. H. Stewart; R. A. Smith; A. J. Harvey-Thompson; G. Burdiak; P. de Grouchy; J. Skidmore; L. Suttle; F. Suzuki-Vidal; S. N. Bland; Kuan Hiang Kwek; L. Pickworth; Matthew R. Bennett; J. Hare; W. Rozmus; J. Yuan

A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.


Physics of Plasmas | 2012

Interaction of a supersonic, radiatively cooled plasma jet with an ambient medium

Francisco Suzuki-Vidal; M. Bocchi; S. V. Lebedev; G. F. Swadling; G. Burdiak; S. N. Bland; P. de Grouchy; G. Hall; A. J. Harvey-Thompson; E. Khoory; S. Patankar; L. Pickworth; J. Skidmore; R. A. Smith; J. P. Chittenden; M. Krishnan; R. Madden; K. Wilson-Elliot; A. Ciardi; Adam Frank

An experimental investigation into the interaction of a supersonic, radiatively cooled plasma jet with argon gas is presented. The jet is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. The outflow consists of a supersonic (Mach number ∼3–5), dense (ion density ni ∼ 1018 cm−3), highly collimated (half-opening angle ∼2°−5°) jet surrounded by a lower density halo plasma moving with the same axial velocity as the jet. The addition of argon above the foil leads to the formation of a shock driven by the ablation of halo plasma, together with a bow-shock driven by the dense jet. Experimental data with and without the presence of argon are compared with three-dimensional, magneto-hydrodynamic simulations using the GORGON code.


Physics of Plasmas | 2012

Optical Thomson scattering measurements of cylindrical wire array parametersa)

A. J. Harvey-Thompson; S. V. Lebedev; S. Patankar; S. N. Bland; G. Burdiak; J. P. Chittenden; A. Colaitis; P. de Grouchy; G. Hall; E. Khoory; M. Hohenberger; L. Pickworth; F. Suzuki-Vidal; R. A. Smith; J. Skidmore; L. Suttle; G. F. Swadling

A Thomson scattering diagnostic has been used to measure the parameters of cylindrical wire array Z pinch plasmas. The scattering operates in the collective regime (α>1) allowing spatially localised measurements of the ion or electron plasma temperatures and of the plasma bulk velocity. The ablation flow is found to accelerate towards the axis reaching peak velocities of 1.2–1.3 × 107 cm/s in aluminium and ∼1 × 107 cm/s in tungsten arrays. Measurements of the precursor ion temperature shortly after formation are found to correspond to the kinetic energy of the converging ablation flow. Measurements during the implosion phase of tungsten arrays show the main imploding mass reaches velocities of ∼1.4–1.7 × 107 cm/s and is non-zero even at large radii close to the start of the x-ray pulse indicating current flow in the trailing mass.


Physics of Plasmas | 2014

The formation of reverse shocks in magnetized high energy density supersonic plasma flows

S. V. Lebedev; L. Suttle; G. F. Swadling; M. Bennett; S. N. Bland; G. Burdiak; D. Burgess; J. P. Chittenden; A. Ciardi; Adam Clemens; P. de Grouchy; G. Hall; J. Hare; N. Kalmoni; N. Niasse; S. Patankar; L. Sheng; R. A. Smith; F. Suzuki-Vidal; J. Yuan; Adam Frank; Eric G. Blackman; R. P. Drake

A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (ReM ∼ 50, MS ∼ 5, MA ∼ 8, Vflow ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ωpi from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.


Physics of Plasmas | 2013

Shock-less interactions of ablation streams in tungsten wire array z-pinches

G. F. Swadling; S. V. Lebedev; G. Hall; F. Suzuki-Vidal; G. Burdiak; A. J. Harvey-Thompson; S. N. Bland; P. de Grouchy; E. Khoory; L. Pickworth; J. Skidmore; L. Suttle

Shock-less dynamics were observed during the ablation phase in tungsten wire array experiments carried out on the 1.4 MA, 240 ns MAGPIE generator at Imperial College London. This behaviour contrasts with the shock structures which were seen to dominate in previous experiments on aluminium arrays [Swadling et al., Phys. Plasmas 20, 022705 (2013)]. In this paper, we present experimental results and make comparisons both with calculations of the expected mean free paths for collisions between the ablation streams and with previously published Thomson scattering measurements of the plasma parameters in these arrays [Harvey-Thompson et al., Phys. Plasmas 19, 056303 (2012)].


Physics of Plasmas | 2013

Determination of the inductance of imploding wire array Z-pinches using measurements of load voltage

G. Burdiak; S. V. Lebedev; G. Hall; A. J. Harvey-Thompson; F. Suzuki-Vidal; G. F. Swadling; E. Khoory; L. Pickworth; S. N. Bland; P. de Grouchy; J. Skidmore

The inductance of imploding cylindrical wire array z-pinches has been determined from measurements of load voltage and current. A thorough analysis method is presented that explains how the load voltage of interest is found from raw signals obtained using a resistive voltage divider. This method is applied to voltage data obtained during z-pinch experiments carried out on the MAGPIE facility (1.4 MA, 240 ns rise-time) in order to calculate the load inductance and thereafter the radial trajectory of the effective current sheath during the snowplough implosion. Voltage and current are monitored very close to the load, allowing these calculations to be carried out without the need for circuit modelling. Measurements give a convergence ratio for the current of between 3.1 and 5.7 at stagnation of the pinch.


The Astrophysical Journal | 2015

BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

Francisco Suzuki-Vidal; S. V. Lebedev; A. Ciardi; L. Pickworth; R. Rodriguez; J.M. Gil; G. Espinosa; Patrick Hartigan; G. F. Swadling; J. Skidmore; G. Hall; M. Bennett; S. N. Bland; G. Burdiak; P. de Grouchy; J. Music; L. Suttle; E. Hansen; Adam Frank

The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counter-streaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame and the experiments are driven over many times the characteristic cooling time-scale. The initially smooth bow shock rapidly develops small-scale non-uniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.


Physics of Plasmas | 2013

Ablation dynamics in coiled wire-array Z-pinches

G. Hall; S. V. Lebedev; F. Suzuki-Vidal; G. F. Swadling; J. P. Chittenden; S. N. Bland; A. J. Harvey-Thompson; P. F. Knapp; I. C. Blesener; R. D. McBride; D. A. Chalenski; Kate Blesener; J. B. Greenly; S. A. Pikuz; T. A. Shelkovenko; D. A. Hammer; B. R. Kusse

Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell Universitys Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coiled wire that gives rise to the ablation structure exhibited by coiled arrays. Observations of this complex 3D plasma structure were used to validate the current model of coiled array ablation dynamics [Hall et al., Phys. Rev. Lett. 100, 065003 (2008)], demonstrating irrefutably that plasma flow from the wires behaves as predicted. Coiled wires were observed to ablate and implode in the same manner on both machines, indicating that current rise time should not be an issue for the scaling of coiled arrays to larger machines with fast current rise times.Experiments to study the ablation dynamics of coiled wire arrays were performed on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and on the COBRA generator at Cornell Universitys Laboratory of Plasma Studies (1 MA, 100 ns). The MAGPIE generator was used to drive coiled wires in an inverse array configuration to study the distribution of ablated plasma. Using interferometry to study the plasma distribution during the ablation phase, absolute quantitative measurements of electron line density demonstrated very high density contrasts between coiled ablation streams and inter-stream regions many millimetres from the wire. The measured density contrasts for a coiled array were many times greater than that observed for a conventional array with straight wires, indicating that a much greater axial modulation of the ablated plasma may be responsible for the unique implosion dynamics of coiled arrays. Experiments on the COBRA generator were used to study the complex redirection of plasma around a coile...

Collaboration


Dive into the G. F. Swadling's collaboration.

Top Co-Authors

Avatar

G. Burdiak

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Hall

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

S. N. Bland

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

L. Suttle

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

L. Pickworth

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge