Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Ferreira is active.

Publication


Featured researches published by G. Ferreira.


Journal of Dairy Science | 2015

Effect of biotin and pantothenic acid on performance and concentrations of avidin-binding substances in blood and milk of lactating dairy cows1

G. Ferreira; Alston N. Brown; C.L. Teets

We hypothesized that pantothenic acid reduces the absorption of biotin in lactating dairy cows. Therefore, the objective of this study was to evaluate the plausible interaction between biotin and pantothenic acid on production performance and concentration of avidin-binding substances (ABS), an indicator of biotin concentration, in blood and milk of lactating dairy cows. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diet sequences in a replicated 4×4 Latin square design with 18-d periods. Cows were housed in a freestall barn and fed once daily (0730 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). Treatments consisted of a control diet that contained no B-vitamins, a biotin diet that contained 0.87 mg of biotin per kilogram of dry matter (DM), a pantothenic acid diet that contained 21 mg of pantothenic acid per kilogram of DM, and a biotin plus pantothenic acid diet that contained 0.87 mg of biotin and 21 mg of calcium pantothenic acid per kilogram of DM. Four different concentrates were prepared in a commercial feed mill. These concentrates were mixed with corn silage and grass hay and delivered ad libitum as a total mixed ration. Biotin supplementation did not affect DM intake, milk yield, or milk fat, protein, lactose, and milk-urea-nitrogen concentrations. Fat, protein, and lactose yields were not affected by treatments. The fat-to-protein ratio was <1 and similar among all treatments. Biotin supplementation did not increase the concentration of ABS in plasma. The supplementation of pantothenic acid did not affect the concentration of ABS in plasma when either supplemented alone or in combination with biotin. Biotin supplementation increased the concentration of ABS in milk relative to control. Contrary to our hypothesis, the supplementation of pantothenic acid did not decrease the concentration of ABS in milk relative to the control. When cows were supplemented with both biotin and pantothenic acid, the concentration of ABS in milk was similar to that of cows supplemented with biotin alone. In conclusion, pantothenic acid did not affect the concentrations of ABS in plasma and milk, suggesting that increasing dietary supply of pantothenic acid did not inhibit biotin absorption.


Journal of Dairy Science | 2017

Effects of feeding hull-less barley on production performance, milk fatty acid composition, and nutrient digestibility of lactating dairy cows

Y. Yang; G. Ferreira; C.L. Teets; Benjamin A. Corl; Wade Everett Thomason; C.A. Griffey

The objectives of this study were to evaluate production performance, milk fatty acid composition, and nutrient digestibility in high-producing dairy cows consuming diets containing corn and hull-less barley (cultivar Amaze 10) in different proportions as the grain source. Eight primiparous and 16 multiparous Holstein cows were assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with 21-d periods. Cows were fed once daily (1200 h) by means of a Calan gate system (American Calan Inc., Northwood, NH). All diets contained ∼20% grain (dry matter basis). Treatments consisted of 100% corn (0B), 67% corn and 33% hull-less barley (33B), 33% corn and 67% hull-less barley (67B), and 100% hull-less barley (100B) as the grain sources. Total-tract nutrient digestibility was estimated using lanthanum chloride (LaCl3) as an external marker. Dry matter intake differed quadratically among treatments, being lowest for 67B and highest for 0B and 100B. Feeding hull-less barley did not affect milk yield, and milk fat concentration differed cubically among treatments. The cubic response was attributed to the higher milk fat concentration observed for the diet containing 67B. Neither the concentrations in milk of protein and lactose nor the yields of protein and lactose differed among treatments. The proportion of de novo synthesized fatty acids in milk did not differ among treatments. The apparent total-tract digestibility of dry matter, crude protein, and neutral detergent fiber did not differ among treatments. Although a quadratic effect was observed, starch digestibility was minimally affected by treatments. In conclusion, this study indicates that hull-less barley grain is as good as corn grain as an energy source when formulating diets for high-producing dairy cows.


Journal of Dairy Science | 2018

Effects of feeding hulled and hull-less barley with low- and high-forage diets on lactation performance, nutrient digestibility, and milk fatty acid composition of lactating dairy cows

Y. Yang; G. Ferreira; C.L. Teets; Benjamin A. Corl; Wade Everett Thomason; C.A. Griffey

The objective of this study was to evaluate lactation performance, nutrient digestibility, and milk fatty acid composition of high-producing dairy cows consuming diets containing hulled or hull-less barley as the grain source when feeding low-forage (LF) or high-forage (HF) diets. Eight primiparous (610 ± 40 kg of body weight and 72 ± 14 d in milk) and 16 multiparous (650 ± 58 kg of body weight and 58 ± 16 d in milk) Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 21-d periods. Cows were assigned to squares based on parity (1, 2, and ≥3) and days in milk. Diets were formulated to contain on a dry matter basis (1) 45% forage and hulled barley as the sole grain source, (2) 65% forage and hulled barley as the sole grain source, (3) 45% forage and hull-less barley as the sole grain source, and (4) 65% forage and hull-less barley as the sole grain source. Dry matter intake tended to be lower for the diet with 65% forage and hulled barley than for the rest of the diets (24.4 vs. 26.6 kg/d). Neither the type of barley nor the forage-to-concentrate ratio affected milk yield (41.7 kg/d). Barley type did not affect milk fat or protein concentrations. Feeding LF diets decreased milk fat concentration from 3.91% to 3.50%. This decrease was less than anticipated and resulted in a 7% decrease in milk fat yield relative to cows consuming HF diets (1.60 and 1.49 kg/d for HF and LF diets, respectively). Feeding LF diets increased the concentration of C18:1 trans-10 in milk fat, suggesting that feeding LF diets may have marginally altered rumen function. In conclusion, LF diets containing barley grains can marginally decrease milk fat concentration. Overall, and based on the conditions of this study, there is limited evidence to anticipate a dramatic or acute milk fat depression when feeding hull-less barley as the grain source in diets for high-producing dairy cows.


Journal of Dairy Science | 2018

Technical note: In situ ruminal starch disappearance kinetics of hull-less barley, hulled barley, and corn grains

G. Ferreira; Y. Yang; C.L. Teets; W.S. Brooks; C.A. Griffey

The objective of this study was to compare ruminal starch disappearance rates of hull-less barley, hulled barley, and corn grains. Five different genotypes were used for each of the 2 barley types. In addition, each of these genotypes was grown in 2 different locations and years, resulting 10 independent barley samples for each of the 2 barley grain types. Five different genotypes of corn grain were obtained from a commercial seed company. After being ground to pass through a 4-mm screen of a cutter mill, 3.6 g of each grain was placed into a porous bag, which was then incubated in the rumen of 2 ruminally cannulated cows for 0, 4, 8, 12, 24, and 48 h. Corn grains had greater instant ruminal starch disappearances than barley grains (22.4 and 8.2%, respectively). Instant ruminal starch disappearances did not differ between hulled and hull-less barley grains. Ruminal starch fractional disappearance rates were greatest for hulled barley grains, moderate for hull-less barley grains, and lowest for corn grains (15.3, 13.9, and 7.1%/h, respectively). Ruminal starch half-life was shortest for hulled and hull-less barley grains (4.4 h) and longest for corn grains (6.6 h). Ruminal starch half-life did not differ between hulled barley and hull-less barley grains. In conclusion, using a holistic experimental design and statistical analysis, this study showed that starch from hull-less barley grains has a ruminal half-life similar to that of hulled barley grains and shorter than that of corn grains.


Journal of Dairy Science | 2017

Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops

Alston N. Brown; G. Ferreira; C.L. Teets; Wade Everett Thomason; C. D. Teutsch

In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be attributed to low concentrations of sugars of mixtures with HV (10.5%). Growing grasses in mixtures with legumes reduced the fiber digestibility of both winter crops (75.7% to 72.8% NDF). Growing grasses in mixtures with legumes did not affect estimated DM yield, nutritional composition, or digestibility of the succeeding summer crops. In conclusion, growing grasses in mixtures with legumes as winter forage crops can increase forage estimated DM yields and its nutritional quality in dairy farming sytems.


Archive | 2016

Environmental Factors Affecting Corn Quality for Silage Production

G. Ferreira; Alston N. Brown

Corn silage is a major ingredient of diets for dairy cattle. Environmental factors can affect the yield and composition of corn silage. Drought and heat are two common environmental factors that affect silage yield and quality. Corn silages with low concentrations of dry matter, high concentrations of protein, high concentrations of fiber, and low concentrations of starch indicate that the crop was harvested too early, that abiotic stresses affected the structure of the plant, or a combination of both. Drought stress during vegetative stages does not affect yield and nutritional composition as much as during reproductive stages. High environmental temperatures (>35 °C) can also induce kernel abortion. The effects of abiotic stresses on cell wall composition are less clear. Drought stress would likely increase fiber digestibility, whereas heat stress would decrease fiber digestibility. These statements are somehow contradictory in the sense that drought stress and heat stress likely occur simultaneously. Management practices, such as hybrid selection and planting date, should be considered to avoid silking and early kernel development during season of very high environmental temperatures.


Maydica | 2016

The interaction of drought stress and heat stress as determinant of dry matter yield and nutritional composition of maize (Zea mays L) whole-plant for silage

G. Ferreira


The Professional Animal Scientist | 2017

Effect of planting density on yield, nutritional quality, and ruminal in vitro digestibility of corn for silage grown under on-farm conditions

G. Ferreira; C.L. Teets


The Professional Animal Scientist | 2017

Case Study: Concentrations of biotin in blood of Holstein bull calves supplemented with biotin and pantothenic acid

G. Ferreira; C.L. Teets


Journal of Animal Science | 2017

059 Vitamin supplementation strategies for transition dairy cows.

G. Ferreira; B. Weiss

Collaboration


Dive into the G. Ferreira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Weiss

Ohio State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge