G. González
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. González.
Classical and Quantum Gravity | 2000
G. González
We present a calculation of the maximum sensitivity achievable by the LIGO gravitational wave detector in construction, due to limiting thermal noise of its suspensions. We present a method to calculate thermal noise that allows the prediction of the suspension thermal noise in all of its six degrees of freedom, from the energy dissipation due to the elasticity of the suspension wires. We show how this approach encompasses and explains previous ways to approximate the thermal noise limit in gravitational wave detectors. We show how this approach can be extended to more complicated suspensions to be used in future LIGO detectors.
Journal of The Optical Society of America A-optics Image Science and Vision | 2002
Brian Lantz; P. Fritschel; Haisheng Rong; Ed Daw; G. González
Interferometric detection of gravitational waves at a level of astrophysical interest is expected to require measurement of optical phase differences of < or = 10(-10) rad. A fundamental limit to the phase sensing is the statistics of photon detection--Poisson statistics for light in a coherent state. We have built a laboratory-scale interferometer to achieve and investigate the phase detection sensitivity required for the Laser Interferometer Gravitational-Wave Observatory. With 70 W of circulating power, we have obtained a phase sensitivity of 1.28 x 10(-10) rad/square root(Hz) at frequencies above 600 Hz, limited by quantum noise. Below 600 Hz, excess noise above the quantum limit is seen, and we present our investigations into the sources of this excess. Compared with the results of previous such experiments, the phase sensitivity over the full 100-Hz-10-kHz band of interest has been improved by factors of up to 100, with a factor-of-2.5 improvement in the quantum-limited level.
arXiv: General Relativity and Quantum Cosmology | 2001
Mark Alfred Beilby; G. González; Michelle Duffy; Amber L. Stuver; Jennifer Poker
Seismic noise will be the dominant source of noise at low frequencies for ground based gravitational wave detectors, such as LIGO now under construction. Future interferometers installed at LIGO plan to use at least a double pendulum suspension for the test masses to help filter the seismic noise. We are constructing an apparatus to use as a test bed for double pendulum design. Some of the tests we plan to conduct include: dynamic ranges of actuators, and how to split control between the intermediate mass and lower test mass; measurements of seismic transfer functions; measurements of actuator and mechanical cross couplings; and measurements of the noise from sensors and actuators. All these properties will be studied as a function of mechanical design of the double pendulum.
arXiv: General Relativity and Quantum Cosmology | 2001
L. S. Finn; G. González; J. Hough; Mijan Huq; S. Mohanty; J. D. Romano; S. Rowan; P. R. Saulson; K. A. Strain
An overview of some tools and techniques being developed for data conditioning (regression of instrumental and environmental artifacts from the data channel), detector design evaluation (modeling the science “reach” of alternative detector designs and configurations), noise simulations for mock data challenges and analysis system validation, and analyses for the detection of gravitational radiation from gamma-ray burst sources.
arXiv: General Relativity and Quantum Cosmology | 2000
G. González
Angular fluctuations of suspended mirrors in gravitational wave interferometers are a source of noise both for the locking and the operation of the detectors. We describe here some of the sources of these fluctuations and methods for the estimation of their order of magnitude.
APS | 2013
R. Vaulin; S. Babak; R. Biswas; P. R. Brady; D. A. Brown; K. Cannon; C. D. Capano; T. Cokelaer; Jolien D. E. Creighton; T. Dent; A. Dietz; S. Fairhurst; N. Fotopoulos; G. González; C. Hanna; I. W. Harry; G. H. Jones; D. G. Keppel; D. J A McKechan; L. Pekowsky; S. Privitera; C. Robinson; Andrea C. Rodriguez; B. S. Sathyaprakash; A. S. Sengupta; M. Vallisneri; A. J. Weinstein
Archive | 2001
Amber L. Stuver; Mark Alfred Beilby; Aran Glancy; G. González