G. Gregory Neely
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Gregory Neely.
Science | 2009
Shane J. Cronin; Nadine T. Nehme; Stefanie Limmer; Samuel Liégeois; J. Andrew Pospisilik; Daniel Schramek; Ricardo de Matos Simoes; Susanne Gruber; Urszula Puc; Ingo Ebersberger; Tamara Zoranovic; G. Gregory Neely; Arndt von Haeseler; Dominique Ferrandon; Josef M. Penninger
Innate Immunity in the Fly Gut Drosophila melanogaster is an important model system to study innate immunity, being both easy to manipulate and lacking an adaptive immune system. In order to identify genes that regulate innate immunity, Cronin et al. (p. 340; published online 11 June) performed an RNA interference screen on flies infected with the oral bacterial pathogen, Serratia marcescens. Genes involved in intestinal immunity and regulation of hemocytes, macrophage-like cells critical for phagocytosis and killing of the bacteria, were identified. Several hundred genes conferred either enhanced susceptibility or resistance to bacterial infection. Furthermore, the JAK/STAT signaling pathway was activated in intestinal stem cells after bacterial infection, resulting in enhanced susceptibility to infection, most likely through regulation of intestinal stem cell homeostasis. In vivo RNA interference screen reveals regulators of innate immunity in Drosophila. Innate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We first employed whole-organism gene suppression, followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal antibacterial immunity. Among the pathways identified, we showed that the JAK-STAT signaling pathway controls host defense in the gut by regulating stem cell proliferation and thus epithelial cell homeostasis. Therefore, we revealed multiple genes involved in antibacterial defense and the regulation of innate immunity.
Cell | 2010
J. Andrew Pospisilik; Daniel Schramek; Harald Schnidar; Shane J. Cronin; Nadine T. Nehme; Xiaoyun Zhang; Claude Knauf; Patrice D. Cani; Karin Aumayr; Jelena Todoric; Martina Bayer; Arvand Haschemi; Vijitha Puviindran; Krisztina Tar; Michael Orthofer; G. Gregory Neely; Georg Dietzl; Armen S. Manoukian; Martin Funovics; Gerhard Prager; Oswald Wagner; Dominique Ferrandon; Fritz Aberger; Chi-chung Hui; Harald Esterbauer; Josef M. Penninger
Over 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway. To extrapolate these findings into mammals, we generated fat-specific hedgehog-activation mutant mice. Intriguingly, these mice displayed near total loss of white, but not brown, fat compartments. Mechanistically, activation of hedgehog signaling irreversibly blocked differentiation of white adipocytes through direct, coordinate modulation of early adipogenic factors. These findings identify a role for hedgehog signaling in white/brown adipocyte determination and link in vivo RNAi-based scanning of the Drosophila genome to regulation of adipocyte cell fate in mammals.
Cell | 2010
G. Gregory Neely; Andreas Hess; Michael Costigan; Alex C. Keene; Spyros Goulas; Michiel Langeslag; Robert S. Griffin; Inna Belfer; Feng Dai; Shad B. Smith; Luda Diatchenko; Vaijayanti Gupta; Cui ping Xia; Sabina Amann; Silke Kreitz; Cornelia Heindl-Erdmann; Susanne Wolz; Cindy V. Ly; Suchir Arora; Rinku Sarangi; Debasis Dan; Maria Novatchkova; Mark R. Rosenzweig; Dustin G. Gibson; Darwin Truong; Daniel Schramek; Tamara Zoranovic; Shane J. Cronin; Belinda Angjeli; Kay Brune
Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.
Cell | 2010
G. Gregory Neely; Keiji Kuba; Anthony Cammarato; Kazuya Isobe; Sabine Amann; Liyong Zhang; Mitsushige Murata; Lisa Elmén; Vaijayanti Gupta; Suchir Arora; Rinku Sarangi; Debasis Dan; Susumu Fujisawa; Takako Usami; Cui ping Xia; Alex C. Keene; Nakissa N. Alayari; Hiroyuki Yamakawa; Ulrich Elling; Christian Berger; Maria Novatchkova; Rubina Koglgruber; Keiichi Fukuda; Hiroshi Nishina; Mitsuaki Isobe; J. Andrew Pospisilik; Yumiko Imai; Arne Pfeufer; Andrew A. Hicks; Peter P. Pramstaller
Heart diseases are the most common causes of morbidity and death in humans. Using cardiac-specific RNAi-silencing in Drosophila, we knocked down 7061 evolutionarily conserved genes under conditions of stress. We present a first global roadmap of pathways potentially playing conserved roles in the cardiovascular system. One critical pathway identified was the CCR4-Not complex implicated in transcriptional and posttranscriptional regulatory mechanisms. Silencing of CCR4-Not components in adult Drosophila resulted in myofibrillar disarray and dilated cardiomyopathy. Heterozygous not3 knockout mice showed spontaneous impairment of cardiac contractility and increased susceptibility to heart failure. These heart defects were reversed via inhibition of HDACs, suggesting a mechanistic link to epigenetic chromatin remodeling. In humans, we show that a common NOT3 SNP correlates with altered cardiac QT intervals, a known cause of potentially lethal ventricular tachyarrhythmias. Thus, our functional genome-wide screen in Drosophila can identify candidates that directly translate into conserved mammalian genes involved in heart function.
Journal of Immunology | 2002
Ling Ling Ma; Jason C. L. Spurrell; Jian Fei Wang; G. Gregory Neely; Slava Epelman; Alan M. Krensky; Christopher H. Mody
Granulysin is located in the acidic granules of cytotoxic T cells. Although the purified protein has antimicrobial activity against a broad spectrum of microbial pathogens, direct evidence for granulysin-mediated cytotoxicity has heretofore been lacking. Studies were performed to examine the regulation and activity of granulysin expressed by CD8 T cells using Cryptococcus neoformans, which is one of the most common opportunistic pathogens of AIDS patients. IL-15-activated CD8 T cells acquired anticryptococcal activity, which correlated with the up-regulation of granulysin. When granules containing granulysin were depleted using SrCl2, or when the gene was silenced using 21-nt small interfering RNA duplexes, the antifungal effect of CD8 T cells was abrogated. Concanamycin A and EGTA did not affect the antifungal effect, suggesting that the activity of granulysin was perforin independent. Following stimulation by the C. neoformans mitogen, CD8 T cells expressed granulysin and acquired antifungal activity. This activity required CD4 T cells and was dependent upon accessory cells. Furthermore, IL-15 was both necessary and sufficient for granulysin up-regulation in CD8 T cells. These observations are most consistent with a mechanism whereby C. neoformans mitogen is presented to CD4 T cells, which in turn activate accessory cells. The resultant IL-15 activates CD8 T cells to express granulysin, which is responsible for antifungal activity.
Journal of Immunology | 2004
Ling Ling Ma; Christopher L. C. Wang; G. Gregory Neely; Slava Epelman; Alan M. Krensky; Christopher H. Mody
Cytotoxic lymphocytes have the capacity to kill microbes directly; however, the mechanisms involved are poorly understood. Using Cryptococcus neoformans, which causes a potentially fatal fungal infection in HIV-infected patients, our previous studies showed that granulysin is necessary, while perforin is dispensable, for CD8 T lymphocyte fungal killing. By contrast, the mechanisms by which NK cells exert their antimicrobial activity are not clear, and in particular, the contribution of granulysin and perforin to NK-mediated antifungal activity is unknown. Primary human NK cells and a human NK cell line YT were found to constitutively express granulysin and perforin, and possessed anticryptococcal activity, in contrast to CD8 T lymphocytes, which required stimulation. When granulysin protein and mRNA were blocked by granulysin small interfering RNA, the NK cell-mediated antifungal effect was not affected in contrast to the abrogated activity observed in CD8 T lymphocytes. However, when perforin was inhibited by concanamycin A, and silenced using hairpin small interfering RNA, the anticryptococcal activities of NK cells were abrogated. Furthermore, when granulysin and perforin were both inhibited, the anticryptococcal activities of the NK cells were not reduced further than by silencing perforin alone. These results indicate that the antifungal activity is constitutively expressed in NK cells in contrast to CD8 T lymphocytes, in which it requires prior activation, and perforin, but not granulysin, plays the dominant role in NK cell anticryptococcal activity, in contrast to CD8 T lymphocytes, in which granulysin, but not perforin, plays the dominant role in anticryptococcal activity.
PLOS ONE | 2011
G. Gregory Neely; Alex C. Keene; Peter Duchek; Elaine C. Chang; Qiao-Ping Wang; Yagiz Alp Aksoy; Mark R. Rosenzweig; Michael Costigan; Clifford J. Woolf; Paul A. Garrity; Josef M. Penninger
Pain is a significant medical concern and represents a major unmet clinical need. The ability to perceive and react to tissue-damaging stimuli is essential in order to maintain bodily integrity in the face of environmental danger. To prevent damage the systems that detect noxious stimuli are therefore under strict evolutionary pressure. We developed a high-throughput behavioral method to identify genes contributing to thermal nociception in the fruit fly and have reported a large-scale screen that identified the Ca2+ channel straightjacket (stj) as a conserved regulator of thermal nociception. Here we present the minimal anatomical and neuronal requirements for Drosophila to avoid noxious heat in our novel behavioral paradigm. Bioinformatics analysis of our whole genome data set revealed 23 genes implicated in Ca2+ signaling that are required for noxious heat avoidance. One of these genes, the conserved thermoreceptor TrpA1, was confirmed as a bona fide “pain” gene in both adult and larval fly nociception paradigms. The nociceptive function of TrpA1 required expression within the Drosophila nervous system, specifically within nociceptive multi-dendritic (MD) sensory neurons. Therefore, our analysis identifies the channel TRPA1 as a conserved regulator of nociception.
Journal of Immunology | 2004
Slava Epelman; Danuta Stack; Chris Bell; Erica Wong; G. Gregory Neely; Stephan Krutzik; Kensuke Miyake; Paul Kubes; Lori Zbytnuik; Ling Ling Ma; Xiaobin Xie; Donald E. Woods; Christopher H. Mody
Some bacterial products possess multiple immunomodulatory effects and thereby complex mechanisms of action. Exogenous administration of an important Pseudomonas aeruginosa virulence factor, exoenzyme S (ExoS) induces potent monocyte activation leading to the production of numerous proinflammatory cytokines and chemokines. However, ExoS is also injected directly into target cells, inducing cell death through its multiple effects on signaling pathways. This study addresses the mechanisms used by ExoS to induce monocyte activation. Exogenous administration resulted in specific internalization of ExoS via an actin-dependent mechanism. However, ExoS-mediated cellular activation was not inhibited if internalization was blocked, suggesting an alternate mechanism of activation. ExoS bound a saturable and specific receptor on the surface of monocytic cells. ExoS, LPS, and peptidoglycan were all able to induce tolerance and cross-tolerance to each other suggesting the involvement of a TLR in ExoS-recognition. ExoS activated monocytic cells via a myeloid differentiation Ag-88 pathway, using both TLR2 and the TLR4/MD-2/CD14 complex for cellular activation. Interestingly, the TLR2 activity was localized to the C-terminal domain of ExoS while the TLR4 activity was localized to the N-terminal domain. This study provides the first example of how different domains of the same molecule activate two TLRs, and also highlights the possible overlapping pathophysiological processes possessed by microbial toxins.
Journal of Immunology | 2001
G. Gregory Neely; Stephen M. Robbins; Ernest K. Amankwah; Slava Epelman; Howard Wong; Jason C. L. Spurrell; Kiran K. Jandu; Weibin Zhu; Darin K. Fogg; Christopher B. Brown; Christopher H. Mody
Although IL-15 shares many of the biological activities of IL-2, IL-2 expression is primarily under transcriptional regulation, while the mechanisms involved in the regulation of IL-15 are complex and not completely understood. In the current study, we found that CD14+ monocytes constitutively exhibit both IL-15 mRNA and protein. IL-15 protein was found stored intracellularly and stimulation of CD14+ monocytes with either LPS or GM-CSF resulted in mobilization of IL-15 stores to the plasma membrane. This rapidly induced surface expression was the result of a translocation of preformed stores, confirming that posttranslational regulatory stages limit IL-15, because it was not accompanied by an increase in IL-15 mRNA and occurred independent of de novo protein synthesis. After fixation, activated monocytes, but not resting monocytes, were found to support T cell proliferation, and this effect was abrogated by the addition of an IL-15-neutralizing Ab. The presence of preformed IL-15 stores and the ability of stimulated monocytes to mobilize these stores to their surface in an active form is a novel mechanism of regulation for IL-15.
PLOS Biology | 2012
Bo Xiong; Vafa Bayat; Manish Jaiswal; Ke Zhang; Hector Sandoval; Wu-Lin Charng; Tongchao Li; Gabriela David; Lita Duraine; Yong-Qi Lin; G. Gregory Neely; Shinya Yamamoto; Hugo J. Bellen
Transport of newly synthesized Rhodopsin upon light stimulation in adult Drosophila photoreceptors is mediated by a Crag/Rab11-dependent vesicular trafficking process.