Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. H. Janssen is active.

Publication


Featured researches published by G. H. Janssen.


Classical and Quantum Gravity | 2010

The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

G. Hobbs; Anne M. Archibald; Zaven Arzoumanian; Donald C. Backer; M. Bailes; N. D. R. Bhat; M Burgay; S. Burke-Spolaor; D. J. Champion; I. Cognard; W. A. Coles; J. M. Cordes; Paul Demorest; G. Desvignes; R. D. Ferdman; Lee Samuel Finn; P. C. C. Freire; M. E. Gonzalez; J. W. T. Hessels; A. W. Hotan; G. H. Janssen; F. A. Jenet; A. Jessner; C. A. Jordan; V. M. Kaspi; M. Kramer; V. I. Kondratiev; Joseph Lazio; K. Lazaridis; K. J. Lee

The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.


Monthly Notices of the Royal Astronomical Society | 2011

Placing Limits on the Stochastic Gravitational-Wave Background Using European Pulsar Timing Array Data

R. van Haasteren; Y. Levin; G. H. Janssen; K. Lazaridis; M. Kramer; B. W. Stappers; G. Desvignes; M. B. Purver; A. G. Lyne; R. D. Ferdman; A. Jessner; I. Cognard; G. Theureau; N. D'Amico; Andrea Possenti; M. Burgay; A. Corongiu; J. W. T. Hessels; R. Smits; J. P. W. Verbiest

The paper ‘Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data’ was published in Mon. Not. R. Astron. Soc. 414, 3117–3128 (2011).


The Astrophysical Journal | 2014

A STATE CHANGE IN THE MISSING LINK BINARY PULSAR SYSTEM PSR J1023+0038

B. W. Stappers; Anne M. Archibald; J. W. T. Hessels; C. G. Bassa; S. Bogdanov; G. H. Janssen; V. M. Kaspi; A. G. Lyne; Alessandro Patruno; Shriharsh P. Tendulkar; A. B. Hill; T. Glanzman

We present radio and γ-ray observations, which, along with concurrent X-ray observations, reveal that the binary millisecond pulsar (MSP)/low-mass X-ray binary transition system PSR J1023+0038 has undergone a transformation in state. Whereas until recently the system harbored a bright millisecond radio pulsar, the radio pulsations at frequencies between 300 to 5000 MHz have now become undetectable. Concurrent with this radio disappearance, the γ-ray flux of the system has quintupled. We conclude that, though the radio pulsar is currently not detectable, the pulsar mechanism is still active and the pulsar wind, as well as a newly formed accretion disk, are together providing the necessary conditions to create the γ-ray increase. This system is the first example of a compact, low-mass binary which has shown significant state changes accompanied by large changes in γ-ray flux; it will continue to provide an exceptional test bed for better understanding the formation of MSPs as well as accretion onto neutron stars in general.


Monthly Notices of the Royal Astronomical Society | 2014

A state change in the low-mass X-ray binary XSS J12270-4859

C. G. Bassa; Alessandro Patruno; J. W. T. Hessels; E. F. Keane; B. Monard; E. K. Mahony; S. Bogdanov; S. Corbel; Philip G. Edwards; Anne M. Archibald; G. H. Janssen; B. W. Stappers; Shriharsh P. Tendulkar

Millisecond radio pulsars acquire their rapid rotation rates through mass and angular momentum transfer in a low-mass X-ray binary system. Recent studies of PSR J1824-2452I and PSR J1023+0038 have observationally demonstrated this link, and they have also shown that such systems can repeatedly transition back-and-forth between the radio millisecond pulsar and low-mass X-ray binary states. This also suggests that a fraction of such systems are not newly born radio millisecond pulsars but are rather suspended in a back-and-forth state switching phase, perhaps for giga-years. XSS J12270-4859 has been previously suggested to be a low-mass X-ray binary, and until recently the only such system to be seen at MeV-GeV energies. We present radio, optical and X-ray observations that offer compelling evidence that XSS J12270-4859 is a low-mass X-ray binary which transitioned to a radio millisecond pulsar state between 2012 November 14 and 2012 December 21. Though radio pulsations remain to be detected, we use optical and X-ray photometry/spectroscopy to show that the system has undergone a sudden dimming and no longer shows evidence for an accretion disk. The optical observations constrain the orbital period to 6.913+-0.002 hr.


The Astrophysical Journal | 2015

Accretion-powered Pulsations in an Apparently Quiescent Neutron Star Binary

Anne M. Archibald; S. Bogdanov; Alessandro Patruno; J. W. T. Hessels; Adam T. Deller; C. G. Bassa; G. H. Janssen; V. M. Kaspi; A. G. Lyne; B. W. Stappers; Shriharsh P. Tendulkar; Caroline R. D’Angelo; Rudy Wijnands

Accreting millisecond X-ray pulsars (AMXPs) are an important subset of low-mass X-ray binaries (LMXBs) in which coherent X-ray pulsations can be observed during occasional, bright outbursts (X-ray luminosity ). These pulsations show that matter is being channeled onto the neutron stars magnetic poles. However, such sources spend most of their time in a low-luminosity, quiescent state (L_X ≲ 10^(34) erg s^(-1)), where the nature of the accretion flow onto the neutron star (if any) is not well understood. Here we report that the millisecond pulsar/LMXB transition object PSR J1023+0038 intermittently shows coherent X-ray pulsations at luminosities nearly 100 times fainter than observed in any other AMXP. We conclude that in spite of its low luminosity, PSR J1023+0038 experiences episodes of channeled accretion, a discovery that challenges existing models for accretion onto magnetized neutron stars.


The Astrophysical Journal | 2013

A New Accretion Disk around the Missing Link Binary System PSR J1023+0038

Alessandro Patruno; Anne M. Archibald; J. W. T. Hessels; S. Bogdanov; B. W. Stappers; C. G. Bassa; G. H. Janssen; V. M. Kaspi; Shriharsh P. Tendulkar; A. G. Lyne

PSR J1023+0038 is an exceptional system for understanding how slowly rotating neutron stars are spun up to millisecond rotational periods through accretion from a companion star. Observed as a radio pulsar from 2007-2013, optical data showed that the system had an accretion disk in 2000/2001. Starting at the end of 2013 June, the radio pulsar has become undetectable, suggesting a return to the previous accretion-disk state, where the system more closely resembles an X-ray binary. In this Letter we report the first targeted X-ray observations ever performed of the active phase and complement them with UV/optical and radio observations collected in 2013 October. We find strong evidence that indeed an accretion disk has recently formed in the system and we report the detection of fast X-ray changes spanning about two orders of magnitude in luminosity. No radio pulsations are seen during low flux states in the X-ray light curve or at any other times.


Monthly Notices of the Royal Astronomical Society | 2016

High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

G. Desvignes; R. N. Caballero; L. Lentati; J. P. W. Verbiest; D. J. Champion; B. W. Stappers; G. H. Janssen; P. Lazarus; S. Oslowski; S. Babak; C. G. Bassa; Patrick Brem; M. Burgay; I. Cognard; Jonathan R. Gair; E. Graikou; L. Guillemot; J. W. T. Hessels; A. Jessner; C. A. Jordan; R. Karuppusamy; M. Kramer; A. Lassus; K. Lazaridis; K. J. Lee; K. Liu; A. G. Lyne; James Mckee; C. M. F. Mingarelli; D. Perrodin

We report on timing, flux density, and polarimetric observations of the transient magnetar and 5.54 s radio pulsar XTE J1810-197 using the GBT, Nancay, and Parkes radio telescopes beginning in early 2006, until its sudden disappearance as a radio source in late 2008. Repeated observations through 2016 have not detected radio pulsations again. The torque on the neutron star, as inferred from its rotation frequency derivative f-dot, decreased in an unsteady manner by a factor of 3 in the first year of radio monitoring. In contrast, during its final year as a detectable radio source, the torque decreased steadily by only 9%. The period-averaged flux density, after decreasing by a factor of 20 during the first 10 months of radio monitoring, remained steady in the next 22 months, at an average of 0.7+/-0.3 mJy at 1.4 GHz, while still showing day-to-day fluctuations by factors of a few. There is evidence that during this last phase of radio activity the magnetar had a steep radio spectrum, in contrast to earlier behavior. There was no secular decrease that presaged its radio demise. During this time the pulse profile continued to display large variations, and polarimetry indicates that the magnetic geometry remained consistent with that of earlier times. We supplement these results with X-ray timing of the pulsar from its outburst in 2003 up to 2014. For the first 4 years, XTE J1810-197 experienced non-monotonic excursions in f-dot by at least a factor of 8. But since 2007, its f-dot has remained relatively stable near its minimum observed value. The only apparent event in the X-ray record that is possibly contemporaneous with the radio shut-down is a decrease of ~20% in the hot-spot flux in 2008-2009, to a stable, minimum value. However, the permanence of the high-amplitude, thermal X-ray pulse, even after the radio demise, implies continuing magnetar activity.


The Astrophysical Journal | 2012

Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

L. Guillemot; T. J. Johnson; C. Venter; M. Kerr; B. Pancrazi; Margaret A. Livingstone; G. H. Janssen; P. Jaroenjittichai; M. Kramer; I. Cognard; B. W. Stappers; Alice K. Harding; F. Camilo; C. Espinoza; P. C. C. Freire; F. Gargano; J. E. Grove; S. Johnston; P. F. Michelson; A. Noutsos; D. Parent; Scott M. Ransom; Paul S. Ray; R. M. Shannon; David Stanley Smith; G. Theureau; S. E. Thorsett; N. Webb

We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the \emph{Fermi} Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival \emph{RXTE} and \emph{XMM-Newton} X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (


The Astrophysical Journal | 2012

A PARALLAX DISTANCE AND MASS ESTIMATE FOR THE TRANSITIONAL MILLISECOND PULSAR SYSTEM J1023+0038

Adam T. Deller; Andrew Archibald; W. F. Brisken; S. Chatterjee; G. H. Janssen; V. M. Kaspi; D. R. Lorimer; A. G. Lyne; M. A. McLaughlin; Scott M. Ransom; I. H. Stairs; B. W. Stappers

\sim 4\sigma


The Astrophysical Journal | 2014

X-Ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-free Rotation-powered Pulsar Binary

S. Bogdanov; Alessandro Patruno; Anne M. Archibald; C. G. Bassa; J. W. T. Hessels; G. H. Janssen; B. W. Stappers

) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

Collaboration


Dive into the G. H. Janssen's collaboration.

Top Co-Authors

Avatar

B. W. Stappers

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Cognard

University of Orléans

View shared research outputs
Top Co-Authors

Avatar

A. G. Lyne

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. B. Purver

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge