Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.H.P. Arts is active.

Publication


Featured researches published by G.H.P. Arts.


Environmental Toxicology and Chemistry | 2005

Effects of lambda-cyhalothrin in two ditch microcosm systems of different trophic status

Ivo Roessink; G.H.P. Arts; J. Dick M. Belgers; Fred Bransen; Steve J. Maund; T.C.M. Brock

The fate and effects of the pyrethroid insecticide lambda-cyhalothrin were compared in mesotrophic (macrophyte-dominated) and eutrophic (phytoplankton-dominated) ditch microcosms (approximately 0.5 m3). Lambda-cyhalothrin was applied three times at one-week intervals at concentrations of 10, 25, 50, 100, and 250 ng/L. The rate of dissipation of lambda-cyhalothrin in the water column of the two types of test systems was similar. After 1 d, only 30% of the amount applied remained in the water phase. Initial, direct effects were observed primarily on arthropod taxa. The most sensitive species was the phantom midge (Chaoborus obscuripes). Threshold levels for slight and transient direct toxic effects were similar (10 ng/L) between types of test systems. At treatment levels of 25 ng/L and higher, apparent population and community responses occurred. At treatments of 100 and 250 ng/L, the rate of recovery of the macroinvertebrate community was lower in the macrophyte-dominated systems, primarily because of a prolonged decline of the amphipod Gammarus pulex. This species occurred at high densities only in the macrophyte-dominated enclosures. Indirect effects (e.g., increase of rotifers and microcrustaceans) were more pronounced in the plankton-dominated test systems, particularly at treatment levels of 25 ng/L and higher.


Environmental Pollution | 2012

Towards a renewed research agenda in ecotoxicology

Joan Artigas; G.H.P. Arts; Marc Babut; Anna Barra Caracciolo; Sandrine Charles; Arnaud Chaumot; Bruno Combourieu; Ingela Dahllöf; Denis Despréaux; Benoît J.D. Ferrari; Nikolai Friberg; Jeanne Garric; Olivier Geffard; Catherine Gourlay-Francé; Michaela Hein; Morten Hjorth; Martin Krauss; Hendrika J. De Lange; J. Lahr; Kari K. Lehtonen; Teresa Lettieri; Matthias Liess; Stephen Lofts; Philipp Mayer; Soizic Morin; Albrecht Paschke; Claus Svendsen; Philippe Usseglio-Polatera; Nico W. van den Brink; Eric Vindimian

New concerns about biodiversity, ecosystem services and human health triggered several new regulations increasing the need for sound ecotoxicological risk assessment. The PEER network aims to share its view on the research issues that this challenges. PEER scientists call for an improved biologically relevant exposure assessment. They promote comprehensive effect assessment at several biological levels. Biological traits should be used for Environmental risk assessment (ERA) as promising tools to better understand relationships between structure and functioning of ecosystems. The use of modern high throughput methods could also enhance the amount of data for a better risk assessment. Improved models coping with multiple stressors or biological levels are necessary to answer for a more scientifically based risk assessment. Those methods must be embedded within life cycle analysis or economical models for efficient regulations. Joint research programmes involving humanities with ecological sciences should be developed for a sound risk management.


Environmental Toxicology and Chemistry | 2004

Aquatic risk assessment of a realistic exposure to pesticides used in bulb crops: a microcosm study.

René P. A. Van Wijngaarden; Jan G.M. Cuppen; G.H.P. Arts; S.J.H. Crum; Martin W. van den Hoorn; Paul J. Van den Brink; T.C.M. Brock

The fungicide fluazinam, the insecticide lambda-cyhalothrin, and the herbicides asulam and metamitron were applied to indoor freshwater microcosms (water volume approximately 0.6 m3). The treatment regime was based on a realistic application scenario in tulip cultivation. Concentrations of each pesticide were equal to 0%, 0.2%, 0.5%, 2%, and 5% spray drift emission of label-recommended rates. Contribution of compounds to the toxicity of the pesticide package was established by expressing their concentrations as fractions of toxic units. The fate of the compounds in the water, and responses of phytoplankton, zooplankton, periphyton, macroinvertebrates, macrophytes, decomposition, and water quality were followed for 13 weeks. The half-lives of lambda-cyhalothrin, metamitron, and fluazinam were 1 to 2 d; that of asulam was >30 d. No consistent effects could be demonstrated for the 0.2% treatment regime that was therefore considered the no-observed-effect concentration community (NOEC). The macroinvertebrate populations of Gammarus pulex, Asellus aquaticus, and Proasellus meridianus were the most sensitive end points, followed by species of copepods and cladocerans. Responses mainly were due to lambda-cyhalothrin. The 0.5% treatment regime resulted in short-term effects. Pronounced effects were observed at the 2% and 5% treatment levels. At the end of the experiment, the macrophyte biomass that consisted of Elodea nuttallii, showed a decline at the two highest treatment levels, asulam being the causal factor (NOEC: 0.5% treatment level). Primary production was reduced at the 5% treatment level only. In our experiment, the first-tier risk assessment procedure for individual compounds was adequate for protecting sensitive populations exposed to realistic combinations of pesticides. Spray drift reduction measures seem to be efficient in protecting aquatic ecosystems in agricultural areas.


Critical Reviews in Environmental Science and Technology | 2014

Sediment Toxicity Testing of Organic Chemicals in the Context of Prospective Risk Assessment: A Review

N.J. Diepens; G.H.P. Arts; T.C.M. Brock; Hauke Smidt; P.J. van den Brink; M.J. van den Heuvel-Greve; Albert A. Koelmans

Sediment toxicity tests play an important role in prospective risk assessment for organic chemicals. This review describes sediment toxicity tests for microorganisms, macrophytes, benthic invertebrates, and benthic communities. Current approaches in sediment toxicity testing are fragmentary and diverse. This hampers the translation of single-species test results between freshwater, estuarine and marine ecosystems and to the population and community levels. A more representative selection of species and endpoints as well as a unification of dose metrics and exposure assessment methodologies across groups of test species, constitutes a first step toward a balanced strategy for sediment toxicity testing of single organic compounds in the context of prospective risk assessment. Supplementary materials are available for this article. Go to the publishers online edition of Critical Reviews in Environmental Science and Technology for the supplemental material.


Archive | 2009

Aquatic Macrophyte Risk Assessment for Pesticides

Lorraine Maltby; G.H.P. Arts; Jo Davies; Fred Heimbach; Christina Pickl; Veronique Poulsen

Given the essential role that primary producers play in aquatic ecosystems, it is imperative that the potential risk of pesticides to the structure and functioning of aquatic plants is adequately assessed. This book discusses the assessment of the risk of pesticides with herbicidal activity to aquatic macrophytes. By integrating regulatory and research information from specialists in the area of environmental regulations, this book provides a state-of-the-art guide to ecotoxicological risk assessment.


Ecotoxicology and Environmental Safety | 2010

The species sensitivity distribution approach compared to a microcosm study: a case study with the fungicide fluazinam.

R.P.A. van Wijngaarden; G.H.P. Arts; J.D.M. Belgers; H. Boonstra; Ivo Roessink; A.F.W. Schroer; T.C.M. Brock

We assessed the sensitivity of freshwater organisms (invertebrates and algae) to the fungicide Shirlan (active ingredient fluazinam) in single-species laboratory tests and in microcosms. Species sensitivity distribution (SSD) curves were constructed by means of acute toxicity data for 14 invertebrate species, since algae were much less sensitive. The EC(10)-based SSD gave a median HC(5) value of 0.6microgL(-1) and a 90% confidence interval of 0.1-1.9 microgL(-1). The EC(50)-based SSD gave a median HC(5) value of 3.9 microgL(-1) (90% confidence interval: 0.9-9.9 microgL(-1)). The microcosms were treated four times with Shirlan (concentration range: 0.4-250 microgL(-1)). Responses of the microcosm communities were followed. The 2 microgL(-1) treatment was the no-observed-effect concentration (NOEC(microcosm)). The 10 microgL(-1) treatment resulted in short-term effects on a few zooplankton taxa. Clear effects were observed at 50 and 250 microgL(-1). The responses in the microcosms were in line with the toxicity data for the tested lab species. The median EC(10)-based HC(5) and the lower limit EC(50)-based HC(5) were lower, and the median EC(50)-based HC(5) was slightly higher than the NOEC(microcosm). This is consistent with other studies that compared SSDs with responses in model ecosystems that received repeated applications of pesticides.


Chemosphere | 2011

Can time-weighted average concentrations be used to assess the risks of metsulfuron-methyl to Myriophyllum spicatum under different time–variable exposure regimes?

J.D.M. Belgers; G.H. Aalderink; G.H.P. Arts; T.C.M. Brock

We tested the effects of the herbicide metsulfuron-methyl on growth of the submerged macrophyte Myriophyllum spicatum under laboratory conditions using different exposure scenarios. The exposures of each scenario were comparable in the concentration × time factor, viz., the same 21-d time-weighted average (TWA) concentrations but variable in peak exposure concentrations (ranging from 0.1 to 21000 ng ai L⁻¹) and exposure periods (1, 3, 7, 14 or 21 d). To study recovery potential of the exposed M. spicatum plants we continued the observation on shoot and root growth for another 21 d in herbicide-free medium so that the total observation period was 42 d. Non-destructive endpoints, length and number of new shoots and roots, were determined weekly from day 14 onwards. Destructive endpoints, dry-weight (DW) of main shoots, new shoots and new roots, were measured at the end of the experiment (t=42 d). Metsulfuron-methyl exposure in particular inhibited new tissue formation but was not lethal to main shoots. On days 21 and 42 after start exposure, EC₁₀/EC₅₀ values for new tissues expressed in terms of peak concentration (=measured concentration during exposure periods of different length) showed large differences between exposure scenarios in contrast to EC₁₀/EC₅₀ values for days 21 and 42 expressed in terms of 21-d and 42-d TWA concentrations, respectively. At the end of the experiment (day 42), 42-d TWA EC(x) values were remarkably similar between exposure scenarios, while a similar trend could already be observed on day 21 for 21-d TWA EC(x) values. For the macrophyte M. spicatum and exposure to the herbicide metsulfuron-methyl the TWA approach seems to be appropriate to use in the risk assessment. However, the data from the toxicity experiment suggest that on day 21 also the absolute height of the pulse exposure played a (minor) role in the exposure - response relationships observed.


Integrated Environmental Assessment and Management | 2013

The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions.

Jeffrey M. Giddings; G.H.P. Arts; Udo Hommen

Lemna spp. are the standard test species representing aquatic macrophytes in the current risk assessment schemes for herbicides and plant growth regulators in the European Union and North America. At a Society of Environmental Toxicology and Chemistry (SETAC) 2008 workshop on Aquatic Macrophyte Risk Assessment for Pesticides (AMRAP), a Species Sensitivity Distribution (SSD) working group was formed to address uncertainties about the sensitivity of Lemna spp. relative to other aquatic macrophyte species. For 11 herbicides and 3 fungicides for which relevant and reliable data were found for at least 6 macrophyte species, SSDs were fitted using lognormal regression. The positions of L. gibba (the most commonly tested Lemna species) and Myriophyllum spicatum (for which standardized test methods are under development) in each SSD were determined where data were available. The sensitivity of standard algal test species required for pesticide registration in the United States under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) relative to the macrophytes in each SSD was also examined (algae were not included in the SSD). L. gibba was among the most sensitive macrophyte species for approximately 50% of the chemicals examined. M. spicatum was among the most sensitive macrophytes for approximately 25% of the chemicals. In most cases, the lowest FIFRA algal species endpoint was lower than the most sensitive macrophyte endpoint. Although no single species consistently represented the most sensitive aquatic plant species, for 12 of 14 chemicals L. gibba and the FIFRA algae included an endpoint near or below the 5th percentile of the macrophyte SSD. For the other compounds, M. spicatum was the most sensitive species of all aquatic plants considered.


Environmental Science and Pollution Research | 2010

AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology

G.H.P. Arts; Jo Davies; Michael Dobbs; Peter Ebke; Mark L. Hanson; Udo Hommen; Katja Knauer; Stefania Loutseti; Lorraine Maltby; Silvia Mohr; Angela G. Poovey; Veronique Poulsen

Introduction and backgroundPrimary producers play critical structural and functional roles in aquatic ecosystems; therefore, it is imperative that the potential risks of toxicants to aquatic plants are adequately assessed in the risk assessment of chemicals. The standard required macrophyte test species is the floating (non-sediment-rooted) duckweed Lemna spp. This macrophyte species might not be representative of all floating, rooted, emergent, and submerged macrophyte species because of differences in the duration and mode of exposure; sensitivity to the specific toxic mode of action of the chemical; and species-specific traits (e.g., duckweeds very short generation time).Discussion and perspectivesThese topics were addressed during the workshop entitled “Aquatic Macrophyte Risk Assessment for Pesticides” (AMRAP) where a risk assessment scheme for aquatic macrophytes was proposed. Four working groups evolved from this workshop and were charged with the task of developing Tier 1 and higher-tier aquatic macrophyte risk assessment procedures. Subsequently, a SETAC Advisory Group, the Macrophyte Ecotoxicology Group (AMEG) was formed as an umbrella organization for various macrophyte working groups. The purpose of AMEG is to provide scientifically based guidance in all aspects of aquatic macrophyte testing in the laboratory and field, including prospective as well as retrospective risk assessments for chemicals. As AMEG expands, it will begin to address new topics including bioremediation and sustainable management of aquatic macrophytes in the context of ecosystem services.


Environmental Toxicology and Chemistry | 2014

Chronic aquatic effect assessment for the fungicide azoxystrobin

René P. A. Van Wijngaarden; Dick Belgers; Mazhar Iqbal Zafar; A.M. Matser; Marie-Claire Boerwinkel; G.H.P. Arts

The present study examined the ecological effects of a range of chronic exposure concentrations of the fungicide azoxystrobin in freshwater experimental systems (1270-L outdoor microcosms). Intended and environmentally relevant test concentrations of azoxystrobin were 0 µg active ingredient (a.i.)/L, 0.33 µg a.i./L, 1 µg a.i./L, 3.3 µg a.i./L, 10 µg a.i./L, and 33 µg a.i./L, kept at constant values. Responses of freshwater populations and community parameters were studied. During the 42-d experimental period, the time-weighted average concentrations of azoxystrobin ranged from 93.5% to 99.3% of intended values. Zooplankton, especially copepods and the Daphnia longispina group, were the most sensitive groups. At the population level, a consistent no-observed-effect concentration (NOEC) of 1 µg a.i./L was calculated for Copepoda. The NOEC at the zooplankton community level was 10 µg azoxystrobin/L. The principle of the European Union pesticide directive is that lower-tier regulatory acceptable concentrations (RACs) are protective of higher-tier RACs. This was tested for chronic risks from azoxystrobin. With the exception of the microcosm community chronic RAC (highest tier), all other chronic RAC values were similar to each other (0.5-1 µg a.i./L). The new and stricter first-tier species requirements of the European Union pesticide regulation (1107/2009/EC) are not protective for the most sensitive populations in the microcosm study, when based on the higher tier population RAC. In comparison, the Water Framework Directive generates environmental quality standards that are 5 to 10 times lower than the derived chronic RACs.

Collaboration


Dive into the G.H.P. Arts's collaboration.

Top Co-Authors

Avatar

T.C.M. Brock

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Roessink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.D.M. Belgers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

René P. A. Van Wijngaarden

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Albert A. Koelmans

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J. Dick M. Belgers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Paul J. Van den Brink

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge