G. H. Zhou
Nanjing Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. H. Zhou.
British Poultry Science | 2011
W.H. Zhang; Y. Jiang; Q.F. Zhu; F. Gao; S.F. Dai; J. Chen; G. H. Zhou
1. The experiment was conducted to investigate the effects of dietary sodium butyrate on the growth performance and immune response of broiler chickens. In experiment 1, 240 1-d-old chickens were allocated into 4 dietary groups (0, 0·25, 0·50 or 1·00 g sodium butyrate/kg) with 6 replicates each. In experiment 2, 120 1-d-old chickens were fed a control diet (without sodium butyrate) or 1·00 g sodium butyrate/kg diet. Half of the chickens fed on each diet were injected intra-peritoneally with 0·5 g/kg body weight of Escherichia coli lipopolysaccharide (LPS) at 16, 18 and 20 d of age. 2. There was no effect of dietary sodium butyrate on growth performance. On d 21, serum interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) were decreased in chickens given 1·00 g sodium butyrate/kg, serum superoxide dismutase (SOD) and catalase activities were significantly increased, and malondialdehyde (MDA) was decreased by dietary sodium butyrate at 0·50 or 1·00 g/kg. On d 42, serum IL-6 was markedly decreased by dietary sodium butyrate, while 1·00 g sodium butyrate/kg greatly reduced MDA and increased catalase. 3. LPS challenge significantly reduced the growth performance of chickens. Serum IL-1β, IL-6, TNF-α, corticosterone, alpha-1 acid glycoprotein (AGP) and prostaglandin E2 (PGE2) were increased in LPS-challenged chickens. Dietary sodium butyrate supplementation maintained the body weight gain and feed intake. Sodium butyrate supplementation inhibited the increase in IL-6 and AGP in serum at 16 d of age and TNF-α, corticosterone, AGP and PGE2 at 20 d of age. Similar inhibitory effects of sodium butyrate in serum glucose and total protein concentrations were also found at 20 d of age. 4. The results indicated that dietary sodium butyrate supplementation can improve the growth performance in chickens under stress and that this may be used to moderate the immune response and reduce tissue damage.
British Poultry Science | 2007
F. Gao; Yun Jiang; G. H. Zhou; Z.K. Han
1. The xylanase product used in this study was derived from a genetically modified isolate of Aspergillus niger. Two trials were conducted to investigate the effects of xylanase supplementation on growth, digestion, circulating hormone and metabolite levels, immune parameters and composition of the gut microflora in cockerels fed on wheat-based diets. 2. The experimental diets consisted of a wheat-based control diet supplemented with 0 or 0·1% enzyme preparation. The diets were fed between 7 and 21 d of age. 3. Enzyme supplementation improved growth and feed conversion efficiency. The addition of enzyme to wheat-based diet increased the apparent total digestibility of dry matter (DM), crude protein and fat. 4. Enzyme supplementation reduced the relative weight of digestive organs to a certain extent, but there was no significant difference. Enzyme supplementation reduced digesta viscosity in the jejunum. There was no significant difference between the two experimental groups in counts of lactobacillus and coliform bacteria in the caeca. 5. Enzyme supplementation increased the concentration of blood thyroxine (T4), insulin-like growth factor I (IGF-I) and insulin, reduced the concentrations of blood uric acid, but had no significant effect on the concentrations of blood glucose and triiodothyronine (T3). 6. Enzyme supplementation increased the relative weight of spleen of cockerels, serum antibody titres to Newcastle disease virus (NDV), lymphocyte proliferation in response to phytohaemagglutinin (PHA) and the natural killer (NK) cell activity. 7. It is concluded that supplementation with an enzyme preparation (xylanase), which hydrolyses non-starch polysaccharides can improve growth in cockerels fed on wheat-based diets. This improvement is achieved through enzyme effects on digestion, absorption, metabolism and immunity of cockerels.
British Poultry Science | 2012
S.F. Dai; F. Gao; Xinglian Xu; W.H. Zhang; Shangxin Song; G. H. Zhou
1. An experiment was conducted to evaluate the effects of dietary glutamine (Gln, 0 and 5 g/kg) and gamma-aminobutyric acid (GABA, 0 and 100 mg/kg) on raw breast meat colour, pH, composition and water-holding characteristic of broilers under cyclic heat stress (HS). 2. A total of 360 21-d-old Arbor Acres male chicks were randomly assigned to 5 treatment groups (6 replicates of 12 birds per cage). The positive control (PC) broilers were kept in a thermoneutral chamber (22–24°C) and fed on the basal diet. The other 4 groups were kept in a cyclic HS chamber (30–34°C) for 9 h (from 09:00 to 18:00). 3. A significant increase was observed in breast meat lightness at 28, 35 and 42 d; and pH values at 28, 35 and 42 d; while a significant decrease was observed in breast meat cooking loss (CL) and contents of moisture, crude protein (CP), crude fat (CF) and crude ash (CA) due to HS. 4. The supplementation with 0·5 g Gln/kg decreased lightness at 28, 35 and 42 d; while increasing redness at 28 d, yellowness at 35 d, contents of CP, CF and CA, thawing loss (TL) and drip loss (DL). The addition of 100 mg GABA/kg decreased lightness at 28 and 35 d, pH value at 28, 35 and 42 d, and TL; while increasing redness at 28 d, 35 and 42 d, contents of moisture, CP and CF. 5. The lightness, redness, and pH value; contents of moisture, CP, CF and CA; and TL, DL and CL of breast meat of broilers fed with the mixture of Gln and GABA under cyclic HS were similar to those of the broilers in the PC group. 6. Significant interactions were found between Gln and GABA for yellowness at 28 and 35 d; pH at 28, 35 and 42 d; moisture content, CP content, water-holding capacity and TL. 7. These results demonstrated that dietary Gln and GABA offer a potential nutritional strategy to prevent cyclic HS-related depression in broiler meat chemical composition and quality.
Poultry Science | 2011
W.H. Zhang; F. Gao; Q. F. Zhu; Chunbao Li; Yun Jiang; S.F. Dai; G. H. Zhou
The present study was to investigate the effects of dietary microencapsulated sodium butyrate (SB) and acute pre-slaughter stress, mimicked by subcutaneous corticosterone (CORT) administration, on BW, carcass characteristics, muscle antioxidant status, and meat quality of broiler chickens. A total of 120 1-d-old broiler chickens were fed a control diet (without SB) or a 0.4-g microencapsulated SB/kg diet. On 42 d, half of the birds from each treatment were given 1 single subcutaneous injection of CORT (4 mg/kg of BW in corn oil) to mimic acute stress, whereas the other half were injected with the same amount of corn oil (sham control). Three hours later, BW loss was determined and breast meat samples were collected. The results showed that the BW of the CORT-challenged groups lost much more than the sham control group (P < 0.001), whereas it was alleviated by the dietary microencapsulated SB (P < 0.05). Meanwhile, the catalase activity was decreased and malondialdehyde level was increased by the stress (P < 0.05), and the microencapsulated-SB diet significantly inhibited this effect (P < 0.05). Lower pH values and higher yellowness values were also observed in CORT-challenged chickens (P < 0.05), and the microencapsulated-SB diet treatment partially exerted a preventive effect. Microencapsulated SB significantly decreased the contents of saturated fatty acids and C18:0 (P < 0.01 and P < 0.001), and increased C20:0 and C20:4 contents. However, the effect of the stress treatment on fatty acid composition was insignificant (P > 0.05). In addition, diet and stress did not significantly influence carcass characteristics and the chemical composition of breast meat (P > 0.05). These results suggest that microencapsulated SB was favorable for chickens in the presence of stress, which may be partially ascribed to the ability of SB to decrease catabolism and oxidative injury of tissues.
Poultry Science | 2012
S. Li; Xinglian Xu; G. H. Zhou
The objective of this study was to investigate the contribution of the changes in the actin-myosin interaction and proteolysis on meat tenderization during postmortem storage. Following slaughter, chicken breast muscles were removed and stored at 4°C. Changes in the actin-myosin interaction over 48 h of aging were determined by monitoring the Mg(2+)- and Ca(2+)-ATPase activities. Shear force values, pH, protein degradation, calpain activities, and myofibrillar ultrastructures were also investigated. Results showed that the initial weak actin-myosin interaction strengthened at 12 h postmortem followed by a gradual weakening, which was supported by a decrease in Mg(2+)-ATPase activities and a lengthening of the sarcomeres. According to SDS-PAGE and Western blotting analyses, the 30-kDa troponin-T fragment could not be readily detected until 12 h, whereas, at the same time, desmin had been rapidly degraded. However, there was a gradual decline in μ-calpain activity, commencing after about 6 h. Meanwhile, the largest decline in shear force was observed between 12 and 24 h postmortem. These findings suggest that weakening of the strong actin-myosin interaction formed at rigor may play a large role in meat tenderization during the early period of storage. It is proposed that weakening of the actin-myosin interaction results in lengthening of the sarcomeres, and then activated calpains are more able to reach their targeted sites, enabling proteolysis. These 2 factors may be involved in the conversion of muscle to tender meat during postmortem storage.
Journal of Animal Science | 2015
Tong Xing; Xinglian Xu; G. H. Zhou; Peng Wang; Nannan Jiang
The objective of this study was to determine the effects of different transport times on broilers during summer on stress, meat quality, and early postmortem muscle metabolites. Arbor Acres broiler chickens (n = 105) were randomly categorized into 5 treatments: unstressed control, 0.5 h, 1 h, 2 h, and 4 h transport. Each treatment consisted of 3 replicates with 7 birds each. All birds (except the control group) were transported according to a designed protocol. With the extension of transport time, the activities of plasma creatine kinase (CK) and lactate dehydrogenase (LDH) gradually increased. The content of heat shock protein 70 (Hsp70) did not change significantly during 0.5 h transport compared to the control group, but was significantly higher (P < 0.05) at 1 h or more of transport time. Also, transport times of 2 h or more resulted in a death rate of 20%-33% of broilers. We found that the breast meat in the 0.5 h transport group had significantly (P < 0.05) higher L* values, drip loss, cooking loss, AMP/ATP ratio, and phosphorylation of AMP-activated protein kinase (p-AMPK). In addition, pH24h was lower compared to the control group, increasing the likelihood of pale, soft, and exudative (PSE)-like meat. However, no significant variations were found in meat color, drip loss, or cooking loss in other transport groups compared to the control group under the condition of this study. Muscle glycogen content decreased with time of transportation. There were significant correlations among p-AMPK and meat quality (P < 0.05). These results indicate that preslaughter transport during summer may cause severe physiological and biochemical changes of broilers. Further investigations studying the deeper relationship between biological indicators and meat quality according to the similar transport conditions would provide a better understanding of the effect of transport duration on meat quality.
Poultry Science | 2012
Qiuqin Zhang; Y. Q. Han; Jinxuan Cao; Xinglian Xu; G. H. Zhou; Wei Zhang
Bacterial diversity and the major flora present on air-packaged broiler meat during storage at normal (4°C) and fluctuating storage temperatures (0-4°C and 4-10°C) were investigated using culture-dependent and culture-independent approaches. Culture-dependent analysis revealed that the growth of microflora was retarded when broiler meat was stored at lower temperatures (0-4°C). Denaturing gradient gel electrophoresis profiles showed that Staphylococcus spp., Pseudomonas spp., Acinetobacter spp., Carnobacterium spp., Aeromonas spp., and Weissella spp. were the dominant bacteria throughout all storage conditions. Enterobacteriaceae only appeared in samples subjected to storage with high temperature abuse, whereas Shewanella spp. and Psychrobacter spp. were only detected in samples stored below 4°C. Our results provide evidence that, compared with storage at a standard fixed temperature (4°C), fluctuations in temperatures induce a more complex bacterial diversity in the air-packaged broiler.
Poultry Science | 2015
Xiaofei Wang; Xudong Zhu; Yong Li; Yang Liu; J. L. Li; F. Gao; G. H. Zhou; L. Zhang
This experiment was to evaluate the effect of dietary supplementation with creatine monohydrate (CMH) during the finishing period on the muscle lipid peroxidation and antioxidant capacity of broilers that experienced transport stress in summer. A total of 320 male Arbor Acres broilers (28 d in age) were randomly allotted to 3 dietary treatments including a basal control diet without additional CMH (160 birds), or with 600 (80 birds) or 1,200 mg/kg (80 birds) CMH for 14 d. On the morning of d 42, after an 8-h fast, the birds fed the basal diets were divided into 2 equal groups, and all birds in the 4 groups of 80 birds were transported according to the following protocols: 1) a 0.75-h transport of birds on basal diets (as a lower-stress control group), 2) a 3-h transport of birds on basal diets, 3) a 3-h transport of birds on 600 or 4) 1,200 mg/kg CMH supplementation diets. The results showed that the 3-h transport decreased the concentration of creatine (Cr) in both the pectoralis major (PM) and the tibialis anterior (TA) muscles, increased the concentration of phosphocreatine (PCr) and PCr/Cr ratio in PM muscle, and elevated the concentrations of thiobarbituric acid-reactive substances and the activities of total superoxide dismutase and glutathione peroxidase in both the PM and TA muscles of birds (P < 0.05). In addition, transport also upregulated mRNA expression of avian uncoupling protein and heat shock protein 70 in both the PM and TA muscles, as well as avian peroxisome proliferator-activated receptor γ coactivator-1α in the TA muscle (P < 0.05). Dietary supplementation with 1,200 mg/kg CMH increased the concentrations of Cr and PCr in PM muscle, and Cr in TA muscle than those in the 3-h transport group (P < 0.05). However, contrary to our hypothesis, dietary CMH did not alter the measured parameters in relation to muscle lipid peroxidation and antioxidant capacity affected by 3-h transport (P > 0.05). These results indicate that dietary CMH supplementation does not provide any significant protection via directly scavenging free radicals or increased antioxidant capacity of transported broilers.
British Poultry Science | 2014
Z.Y. Guo; J. L. Li; Lin Zhang; Yun Jiang; F. Gao; G. H. Zhou
Abstract 1. This experiment was conducted to investigate the effect of basal dietary supplementation with 500 mg/kg alpha-lipoic acid (LA) on growth performance, antioxidant capacity and meat quality in different stages in broiler chickens. 2. A total of 240 Arbor Acre chickens were randomly assigned into 4 treatment groups, each treatment containing 6 replicates of 10 chickens each. Group 1 was the control group without LA supplementation; Group 2 was supplied with LA in the starter period; Group 3 was supplied with LA in the grower period; and Group 4 was supplied with LA in the whole period. 3. The results showed that LA supplementation improved average feed intake and body weight gain in all three experimental groups, especially in Group 2. LA supplementation significantly decreased abdominal fat yield in Groups 3 and 4. 4. LA supplementation all improved hepatic total antioxidant capacity, the level of glutathione, the activities of total superoxide dismutase, catalase (CAT) and glutathione peroxidase, in particular in Group 4. LA supplementation decreased the activity of liver xanthine oxidase (XO) in all experimental groups, and that of liver monoamine oxidase in Group 3. The activities of liver CAT and XO in Group 2 were higher than that in Group 3. LA supplementation elevated the pH24 h and decreased drip loss in breast meat in Groups 3 and 4. 5. In conclusion, LA supplementation can improve growth performance, antioxidant properties and meat quality in broiler chicken. LA supplementation in the starter period can improve growth performance and supplementation in the grower – and in the whole period can improve carcass characteristics. There was no significant difference in meat quality of broiler chickens fed on LA-supplemented diet in different stages.
Animal | 2014
Lin Zhang; J. L. Li; T. Gao; Meng Lin; Xiaofei Wang; Xudong Zhu; F. Gao; G. H. Zhou
A total of 320 male Arbor Acres broiler chickens (28 days old) were randomly allotted to one of the three experimental diets supplemented with 0 (160 birds), 600 (80 birds) or 1200 mg/kg (80 birds) creatine monohydrate (CMH) for 14 days. On the morning of 42 day, after an 8-h fast, the birds of CMH-free group were divided into two equal groups, and all birds of these four groups were transported according to the follow protocol: 0.75-h transport without CMH supplementation (as a lower stress control group), 3-h transport without CMH supplementation, 3-h transport with 600 or 1200 mg/kg CMH supplementation. Each treatment group was composed of 8 replicates with 10 birds each. The results showed that supplementation of CMH for 14 days before slaughter did not affect the overall growth performance and carcass traits of stressed broilers (P>0.05). A 3-h transport decreased plasma glucose concentration, elevated plasma corticosterone concentration, increased bird live weight loss, breakdown of muscle glycogen, as well as the accumulation of muscle lactate (P<0.05), which induced some detrimental changes to breast meat quality (lower ultimate pH and higher drip loss, P<0.05). Nevertheless, supplementation of 1200 mg/kg CMH reduced chicken weight loss, decreased the contents of lactate and glycolytic potential in pectoralis major of 3-h transported broilers (P<0.05), which is beneficial to maintain breast meat quality by reducing the drip loss (P<0.05). These findings suggest that the reduction of muscle glycolysis is probably the reason for maintainance of meat quality by supplementation of CMH in transported broilers.