Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Harry van Lenthe is active.

Publication


Featured researches published by G. Harry van Lenthe.


Journal of Bone and Mineral Research | 2009

Bone Structure at the Distal Radius During Adolescent Growth

Salman Kirmani; David Christen; G. Harry van Lenthe; Philip R. Fischer; Mary L. Bouxsein; Louise K. McCready; L. Joseph Melton; B. Lawrence Riggs; Shreyasee Amin; Ralph Müller; Sundeep Khosla

The incidence of distal forearm fractures peaks during the adolescent growth spurt, but the structural basis for this is unclear. Thus, we studied healthy 6‐ to 21‐yr‐old girls (n = 66) and boys (n = 61) using high‐resolution pQCT (voxel size, 82 μm) at the distal radius. Subjects were classified into five groups by bone‐age: group I (prepuberty, 6–8 yr), group II (early puberty, 9–11 yr), group III (midpuberty, 12–14 yr), group IV (late puberty, 15–17 yr), and group V (postpuberty, 18–21 yr). Compared with group I, trabecular parameters (bone volume fraction, trabecular number, and thickness) did not change in girls but increased in boys from late puberty onward. Cortical thickness and density decreased from pre‐ to midpuberty in girls but were unchanged in boys, before rising to higher levels at the end of puberty in both sexes. Total bone strength, assessed using microfinite element models, increased linearly across bone age groups in both sexes, with boys showing greater bone strength than girls after midpuberty. The proportion of load borne by cortical bone, and the ratio of cortical to trabecular bone volume, decreased transiently during mid‐ to late puberty in both sexes, with apparent cortical porosity peaking during this time. This mirrors the incidence of distal forearm fractures in prior studies. We conclude that regional deficits in cortical bone may underlie the adolescent peak in forearm fractures. Whether these deficits are more severe in children who sustain forearm fractures or persist into later life warrants further study.


Journal of Bone and Mineral Research | 2007

Contribution of In Vivo Structural Measurements and Load/Strength Ratios to the Determination of Forearm Fracture Risk in Postmenopausal Women

L. Joseph Melton; B. Lawrence Riggs; G. Harry van Lenthe; Sara J. Achenbach; Ralph Müller; Mary L. Bouxsein; Shreyasee Amin; Elizabeth J. Atkinson; Sundeep Khosla

Bone structure, strength, and load‐strength ratios contribute to forearm fracture risk independently of areal BMD.


The FASEB Journal | 2009

Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor-α

Filip Callewaert; Katrien Venken; Jill Ophoff; Karel De Gendt; Antonia Torcasio; G. Harry van Lenthe; Hans Van Oosterwyck; Steven Boonen; Roger Bouillon; Guido Verhoeven; Dirk Vanderschueren

Osteoporosis and muscle frailty are important health problems in elderly men and may be partly related to biological androgen activity. This androgen action can be mediated directly through stimulation of the androgen receptor (AR) or indirectly through stimulation of estrogen receptor‐alpha (ERα) following aromatization of androgens into estrogens. To assess the differential action of AR and ERα pathways on bone and body composition, AR‐ERα double‐knockout mice were gener‐ated and characterized. AR disruption decreased trabec‐ular bone mass, whereas ERα disruption had no additional effect on the AR‐dependent trabecular bone loss. In contrast, combined AR and ERα inactivation additionally reduced cortical bone and muscle mass compared with either AR or ERα disruption alone. ERα inactivation—in the presence or absence of AR—increased fat mass. We demonstrate that AR activation is solely responsible for the development and maintenance of male trabecular bone mass. Both AR and ERα activation, however, are needed to optimize the acquisition of cortical bone and muscle mass. ERα activation alone is sufficient for the regulation of fat mass. Our findings clearly define the relative importance of AR and ERα signaling on trabecu‐lar and cortical bone mass as well as body composition in male mice.—Callewaert, F., Venken, K., Ophoff, J., De Gendt, K., Torcasio, A., van Lenthe, G. H., Van Ooster‐wyck, H., Boonen, S., Bouillon, R., Verhoeven, G., Vanderschueren, D. Differential regulation of bone and body composition in male mice with combined inactivation of androgen and estrogen receptor‐α. FASEB J. 23, 232‐240 (2009)


Journal of Bone and Mineral Research | 2006

Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness

Martin Stauber; Laurent Rapillard; G. Harry van Lenthe; Philippe K. Zysset; Ralph Müller

Local morphometry based on the assessment of individual rods and plates was applied to 42 human vertebral trabecular bone samples. Results showed that multiple linear regression models based on local morphometry as a measure for bone microstructure helped improving our understanding of the role of local structural changes in the determination of bone stiffness as assessed from direct and computational biomechanics.


Bone | 2009

Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius.

Tl Mueller; Martin Stauber; Thomas Kohler; F. Eckstein; Ralph Müller; G. Harry van Lenthe

Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength. Bone strength depends, among others, on bone density, bone geometry and its internal architecture. With the recent introduction of a new generation high-resolution 3D peripheral quantitative computed tomography (HR-pQCT) system, direct quantification of structural bone parameters has become feasible. Furthermore, it has recently been demonstrated that bone mechanical competence can be derived from HR-pQCT based micro-finite element modeling (microFE). However, reproducibility data for HR-pQCT-derived mechanical indices is not well-known. Therefore, the aim of this study was to quantify reproducibility of HR-pQCT-derived indices. We measured 14 distal formalin-fixed cadaveric forearms three times and analyzed three different regions for each measurement. For each region cortical and trabecular parameters were determined. Reproducibility was assessed with respect to precision error (PE) and intraclass correlation coefficient (ICC). Reproducibility values were found to be best in all three regions for the full bone compartment with an average PE of 0.79%, followed by the cortical compartment (PE=1.19%) and the trabecular compartment with an average PE of 2.31%. The mechanical parameters showed similar reproducibility (PE=0.48%-2.93% for bone strength and stiffness, respectively). ICC showed a very high reproducibility of subject-specific measurements, ranging from 0.982 to 1.000, allowing secure identification of individual donors ranging from healthy to severely osteoporotic subjects. From these in vitro results we conclude that HR-pQCT derived morphometric and mechanical parameters are highly reproducible such that differences in bone structure and strength can be detected with a reproducibility error smaller than 3%; hence, the technique has a high potential to become a tool for detecting bone quality and bone competence of individual subjects.


Bone | 2011

Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population

Tl Mueller; David Christen; Steve Sandercott; Steven K. Boyd; Bert van Rietbergen; F. Eckstein; Eva-Maria Lochmüller; Ralph Müller; G. Harry van Lenthe

High-resolution peripheral quantitative computed tomography (HR-pQCT) is clinically available today and provides a non-invasive measure of 3D bone geometry and micro-architecture with unprecedented detail. In combination with microarchitectural finite element (μFE) models it can be used to determine bone strength using a strain-based failure criterion. Yet, images from only a relatively small part of the radius are acquired and it is not known whether the region recommended for clinical measurements does predict forearm fracture load best. Furthermore, it is questionable whether the currently used failure criterion is optimal because of improvements in image resolution, changes in the clinically measured volume of interest, and because the failure criterion depends on the amount of bone present. Hence, we hypothesized that bone strength estimates would improve by measuring a region closer to the subchondral plate, and by defining a failure criterion that would be independent of the measured volume of interest. To answer our hypotheses, 20% of the distal forearm length from 100 cadaveric but intact human forearms was measured using HR-pQCT. μFE bone strength was analyzed for different subvolumes, as well as for the entire 20% of the distal radius length. Specifically, failure criteria were developed that provided accurate estimates of bone strength as assessed experimentally. It was shown that distal volumes were better in predicting bone strength than more proximal ones. Clinically speaking, this would argue to move the volume of interest for the HR-pQCT measurements even more distally than currently recommended by the manufacturer. Furthermore, new parameter settings using the strain-based failure criterion are presented providing better accuracy for bone strength estimates.


Journal of Bone and Mineral Research | 2010

Sexual Dimorphism in Cortical Bone Size and Strength But Not Density Is Determined by Independent and Time-Specific Actions of Sex Steroids and IGF-1: Evidence From Pubertal Mouse Models

Filip Callewaert; Katrien Venken; John J. Kopchick; Antonia Torcasio; G. Harry van Lenthe; Steven Boonen; Dirk Vanderschueren

Although it is well established that males acquire more bone mass than females, the underlying mechanism and timing of this sex difference remain controversial. The aim of this study was to assess the relative contribution of sex steroid versus growth hormone–insulin‐like growth factor 1 (GH–IGF‐1) action to pubertal bone mass acquisition longitudinally in pubertal mice. Radial bone expansion peaked during early puberty (3 to 5 weeks of age) in male and female mice, with significantly more expansion in males than in females (+40%). Concomitantly, in 5 week old male versus female mice, periosteal and endocortical bone formation was higher (+70%) and lower (−47%), respectively, along with higher serum IGF‐1 levels during early puberty in male mice. In female mice, ovariectomy increased radial bone expansion during early puberty as well as the endocortical perimeter. In male mice, orchidectomy reduced radial bone expansion only during late puberty (5 to 8 weeks of age), whereas combined androgen and estrogen deficiency modestly decreased radial bone expansion during early puberty, accompanied by lower IGF‐1 levels. GHRKO mice with very low IGF‐1 levels, on the other hand, showed limited radial bone expansion and no skeletal dimorphism. From these data we conclude that skeletal sexual dimorphism is established during early puberty and depends primarily on GH–IGF‐1 action. In males, androgens and estrogens have stimulatory effects on bone size during late and early puberty, respectively. In females, estrogens limit bone size during early puberty. These longitudinal findings in mice provide strong evidence that skeletal dimorphism is determined by independent and time‐specific effects of sex steroids and IGF‐1.


Bone | 2009

Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population ☆

Tl Mueller; G. Harry van Lenthe; Martin Stauber; Christian Gratzke; F. Eckstein; Ralph Müller

An accurate prediction of bone strength in the human radius is of major interest because distal radius fractures are amongst the most common in humans. The objective of this study was to determine gender and age-related changes in bone morphometry at the radius and how these relate to bone strength. Specifically, our aims were to (i) analyze gender differences to get an insight into different bone quantities and qualities between women and men, (ii) to determine which microarchitectural bone parameters would best correlate with strength, (iii) to find the region of interest for the best assessment of bone strength, and (iv) to determine how loss of bone quality depends on age. Intact right forearms of 164 formalin-fixed cadavers from a high-risk elderly population were imaged with a new generation high-resolution pQCT scanner (HR-pQCT). Morphometric indices were derived for six different regions and were related to failure load as assessed by experimental uniaxial compression testing. Significant gender differences in bone quantity and quality were found that correlated well with measured failure load. The most relevant region to determine failure load based on morphometric indices assessed in this study was located just below the proximal end of the subchondral plate; this region differed from the one measured clinically today. Trends in bone changes with increasing age were found, even though for all morphometric indices the variation between subjects was large in comparison to the observed age-related changes. We conclude that HR-pQCT systems can determine how gender and age-related changes in morphometric parameters relate to bone strength, and that HR-pQCT is a promising tool for the assessment of bone quality in patient populations.


Bone | 2008

Tissue modulus calculated from beam theory is biased by bone size and geometry: Implications for the use of three-point bending tests to determine bone tissue modulus

G. Harry van Lenthe; Romain Voide; Steven K. Boyd; Ralph Müller

Current practice to determine bone tissue modulus of murine cortical bone is to estimate it from three-point bending tests, using Euler-Bernoulli beam theory. However, murine femora are not perfect beams; hence, results can be inaccurate. Our aim was to assess the accuracy of beam theory, which we tested for two commonly used inbred strains of mice, C57BL/6 (B6) and C3H/He (C3H). We measured the three-dimensional structure of male and female B6 and C3H femora (N=20/group) by means of micro-computed tomography. For each femur five micro-finite element (micro-FE) models were created that simulated three-point bending tests with varying distances between the supports. Tissue modulus was calculated from beam theory using micro-FE results. The accuracy of beam theory was assessed by comparing the beam theory-derived moduli with the modulus as used in the micro-FE analyses. An additional set of fresh-frozen femora (10 B6 and 12 C3H) was biomechanically tested and subjected to the same micro-FE analyses. These combined experimental-computational analyses enabled an unbiased assessment of specimen-specific tissue modulus. We found that by using beam theory, tissue modulus was underestimated for all femora. Femoral geometry and size had strong effects on beam theory-derived tissue moduli. Owing to their relatively thin cortex, underestimation was markedly higher for B6 than for C3H. Underestimation was dependent on support width in a strain-specific manner. From our combined experimental-computational approach we calculated tissue moduli of 12.0+/-1.3 GPa and 13.4+/-2.1 GPa for B6 and C3H, respectively. We conclude that tissue moduli in murine femora are strongly underestimated when calculated from beam theory. Using image-based micro-FE analyses we could precisely quantify this underestimation. We showed that previously reported murine inbred strain-specific differences in tissue modulus are largely an effect of geometric differences, not accounted for by beam theory. We suggest a re-evaluation of the tissue properties obtained from three-point bending tests, especially in mouse genetics.


Bone | 2011

Implant stability is affected by local bone microstructural quality

A.J. Wirth; Jörg Goldhahn; Cyril Flaig; Peter Arbenz; Ralph Müller; G. Harry van Lenthe

It is known that low bone quality, caused for instance by osteoporosis, not only increases the risk of fractures, but also decreases the performance of fracture implants; yet the specific mechanisms behind this phenomenon are still largely unknown. We hypothesized that especially peri-implant bone microstructure affects implant stability in trabecular bone, to a greater degree than more distant bone. To test this hypothesis we performed a computational study on implant stability in trabecular bone. Twelve humeral heads were measured using micro-computed tomography. Screws were inserted digitally into these heads at 25 positions. In addition, at each screw location, a virtual biopsy was taken. Bone structural quality was quantified by morphometric parameters. The stiffness of the 300 screw-bone constructs was quantified as a measure of implant stability. Global bone density correlated moderately with screw-bone stiffness (r2=0.52), whereas local bone density was a very good predictor (r2=0.91). The best correlation with screw-bone stiffness was found for local bone apparent Youngs modulus (r2=0.97), revealing that not only bone mass but also its arrangement in the trabecular microarchitecture are important for implant stability. In conclusion, we confirmed our hypothesis that implant stability is affected by the microstructural bone quality of the trabecular bone in the direct vicinity of the implant. Local bone density was the best single morphometric predictor of implant stability. The best predictability was provided by the mechanical competence of the peri-implant bone. A clinical implication of this work is that apparently good bone stock, such as assessed by DXA, does not guarantee good local bone quality, and hence does not guarantee good implant stability. New tools that could quantify the structural or mechanical quality of the peri-implant bone may help improve the surgical intervention in reaching better clinical outcomes for screw fixation.

Collaboration


Dive into the G. Harry van Lenthe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonia Torcasio

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Boonen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jef Vanderoost

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge