Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Heusser is active.

Publication


Featured researches published by G. Heusser.


Physics Letters B | 1996

GALLEX solar neutrino observations: Results for GALLEX IV

W. Hampel; E. Bellotti; J. Handt; R.W. Stoenner; M. Spiro; E. Henrich; L. Paoluzi; E. Fiorini; S. d'Angelo; R. von Ammon; D. Heidt; P. Belli; Ernst Pernicka; O. Cremonesi; L. Stieglitz; R. Mossbauer; R. Bernabei; S. Wanninger; G. Heusser; I. Dostrovsky; I. Carmi; J.K. Rowley; J Boger; C. Bacci; F.X. Hartmann; J. Weneser; F. von Feilitzsch; M. Wojcik; M. Laubenstein; T. Kirsten

Abstract We report the GALLEX solar neutrino results for the measuring period GALLEX III, the period from 12 October 1994-4 October 1995. Counting for these runs was completed on 29 March 1996. The GALLEX III result (14 runs) is [53.9 ± 10.6(stat.) ± 3.1 (syst.)] SNU (1σ). This is 15.8 SNU below but statistically compatible with the new combined result for GALLEX (I+II+III) (53 runs), which is [69.7 ± 6.7(stat.) −4.5 +3.9 (syst.)] SNU (1σ) or (69.7 −8.1 +7.8 ) SNU with errors quadratically added. We also give the preliminary result from our second 51 Cr-source experiment: the measured detector response is 83±10% of expectation. The combined result from both GALLEX 51 Cr-source experiments is 92±8% of expectation.


European Physical Journal A | 2001

Latest results from the HEIDELBERG-MOSCOW double beta decay experiment

H.V. Klapdor-Kleingrothaus; A. Dietz; L. Baudis; G. Heusser; I. V. Krivosheina; B. Majorovits; H. Paes; H. Strecker; V. Alexeev; A. Balysh; A. M. Bakalyarov; S. T. Belyaev; V. I. Lebedev; S. V. Zhukov

Abstract:New results for the double beta decay of 76Ge are presented. They are extracted from data obtained with the HEIDELBERG-MOSCOW experiment, which operates five enriched 76Ge detectors in an extreme low-level environment in the Gran Sasso underground laboratory. The two-neutrino-accompanied double beta decay is evaluated for the first time for all five detectors with a statistical significance of 47.7 kg y resulting in a half-life of T1/22ν = [1.55±0.01(stat)+0.19-0.15(syst)]×1021 y. The lower limit on the half-life of the 0νββ decay obtained with pulse shape analysis is T1/20ν > 1.9×1025(3.1×1025) y with 90% C.L. (68% C.L.) (with 35.5 kg y). This results in an upper limit of the effective Majorana-neutrino mass of 0.35 eV (0.27 eV) using the matrix elements of A. Staudt et al.s work (Europhys. Lett. 13, 31 (1990)). This is the most stringent limit at present from double beta decay. No evidence for a majoron-emitting decay mode is observed.


Physics Letters B | 1992

Solar neutrinos observed by GALLEX at Gran Sasso.

P. Anselmann; E. Bellotti; R.W. Stoenner; M. Spiro; E. Henrich; U. Roenn; L. Paoluzi; E. Fiorini; S. d'Angelo; R. von Ammon; P. Belli; C. Schlosser; Ernst Pernicka; O. Cremonesi; L. Stieglitz; R.L. Mössbauer; R. Bernabei; R. Wink; K. Hellriegel; G. Heusser; I. Dostrovsky; I. Carmi; J.K. Rowley; F. Weirich; C. Bacci; F.X. Hartmann; U. Schanda; J. Weneser; F. von Feilitzsch; S. Pezzoni

We have measured the rate of production of 71Ge from 71Ga by solar neutrinos. The target consists of 30.3 t of gallium in the form of 8.13 M aqueous gallium chloride solution (101 t), shielded by ≈ 3300 m water equivalent of standard rock in the Gran Sasso Underground Laboratory (Italy). In nearly one year of operation, 14 measurements of the production rate of 71Ge were carried out to give, after corrections for side reactions and other backgrounds, an average value of 83 + 19 (stat.) ± 8 (syst.) SNU (1σ) due to solar neutrinos. This conclusion constitutes the first observation of solar pp neutrinos. Our result is consistent with the presence of the full pp neutrino flux expected according to the “standard solar model” together with a reduced flux of 8B + 7Be neutrinos as observed in the Homestake and Kamiokande experiments. Astrophysical reasons remain as a possible explanation of the solar neutrino problem. On the other hand, if the result is to be interpreted in terms of the MSW effect, it would fix neutrino masses and mixing angles within a very restricted range.


Physical Review Letters | 1999

LIMITS ON THE MAJORANA NEUTRINO MASS IN THE 0.1 EV RANGE

L. Baudis; A. Dietz; G. Heusser; H.V. Klapdor-Kleingrothaus; I. V. Krivosheina; St. Kolb; B. Majorovits; V. F. Melnikov; H. Päs; F. Schwamm; H. Strecker; V. Alexeev; A. Balysh; A. M. Bakalyarov; S. T. Belyaev; V. I. Lebedev; S. V. Zhukov

The Heidelberg-Moscow experiment gives the most stringent limit on the Majorana neutrino mass. After 24 kg yr of data with pulse shape measurements, we set a lower limit on the half-life of the neutrinoless double beta decay in 76Ge of T_1/2 > 5.7 * 10^{25} yr at 90% C.L., thus excluding an effective Majorana neutrino mass greater than 0.2 eV. This allows to set strong constraints on degenerate neutrino mass models.


Astroparticle Physics | 2002

Science and technology of Borexino: a real-time detector for low energy solar neutrinos

G. Alimonti; C. Arpesella; H. O. Back; M. Balata; T. Beau; G. Bellini; J. Benziger; S. Bonetti; A. Brigatti; B. Caccianiga; L. Cadonati; F. Calaprice; G. Cecchet; M. Chen; A. de Bari; E. de Haas; H. de Kerret; O. Donghi; M. Deutsch; F. Elisei; A. Etenko; F. von Feilitzsch; R. Fernholz; R. Ford; B. Freudiger; A. Garagiola; C. Galbiati; F. Gatti; S. Gazzana; M. Giammarchi

Abstract Borexino, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiments goal is the direct measurement of the flux of 7 Be solar neutrinos of all flavors via neutrino–electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large-scale operation of a 4-ton test detector at LNGS, a new technology has been developed for Borexino. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of Borexino, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. Borexino will also address several other frontier questions in particle physics, astrophysics and geophysics.


Physics Letters B | 2010

Reanalysis of the Gallex solar neutrino flux and source experiments

F. Kaether; W. Hampel; G. Heusser; J. Kiko; T. Kirsten

Abstract After the completion of the gallium solar neutrino experiments at the Laboratori Nazionali del Gran Sasso ( Gallex : 1991–1997; GNO: 1998–2003) we have retrospectively updated the Gallex results with the help of new technical data that were impossible to acquire for principle reasons before the completion of the low rate measurement phase (that is, before the end of the GNO solar runs). Subsequent high rate experiments have allowed the calibration of absolute internal counter efficiencies and of an advanced pulse shape analysis for counter background discrimination. The updated overall result for Gallex (only) is 73.4 − 7.3 + 7.1 SNU . This is 5.3% below the old value of 77.5 − 7.8 + 7.5 SNU ( Gallex Collaboration, W. Hampel et al., 1999 [1] ), with a substantially reduced error. A similar reduction is obtained from the reanalysis of the 51Cr neutrino source experiments of 1994/1995.


Physics Letters B | 1995

First results from the 51Cr neutrino source experiment with the GALLEX detector

P. Anselmann; R. Fockenbrock; W. Hampel; G. Heusser; J. Kiko; T. Kirsten; M. Laubenstein; Ernst Pernicka; S. Pezzoni; U. Rönn; F. Spielker; R. Wink; M. Wojcik; R.v Ammon; K.H. Ebert; T. Fritsch; D. Heidt; E. Henrich; C. Schlosser; L. Stieglitz; F. Weirich; M. Balata; H. Lalla; E. Bellotti; C. Cattadori; O. Cremonesi; N. Ferrari; E. Fiorini; L. Zanotti; M. Altmann

Abstract The radiochemical GALLEX experiment, which has been measuring the solar neutrino flux since May 1991, has performed an investigation with an intense man-made 51 Cr neutrino source (61.9 ± 1.2 PBq). The source, produced via neutron irradiation of ≈ 36 kg of chromium enriched in 50 Cr, primarily emits 746 keV neutrinos. It was placed for a period of 3.5 months in the reentrant tube in the GALLEX tank, to expose the gallium chloride target to a known neutrino flux. This experiment provides the ratio, R , of the production rate of Cr-produced 71 Ge measured in these source exposures to the rate expected from the known source activity: R = 1.04 ± 0.12. This result not only constitutes the first observation of low-energy neutrinos from a terrestrial source, but also (a) provides an overall check of GALLEX, indicating that there are no significant experimental artifacts or unknown errors at the 10% level that are comparable to the 40% deficit in observed solar neutrino signal, and (b) directly demonstrates for the first time, using a man-made neutrino source, the validity of the basic principles of radiochemical methods used to detect rare events (at the level of 10 atoms or less). Because of the close similarity in neutrino energy spectra from 51 Cr and from the solar 7 Be branch, this source experiment also shows that the gallium detector is sensitive to 7 Be neutrinos with full efficiency.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1998

A large-scale low-background liquid scintillation detector: the counting test facility at Gran Sasso

G. Alimonti; C. Arpesella; G Bacchiocchi; M. Balata; G. Bellini; J. Benziger; S. Bonetti; A. Brigatti; L. Cadonati; Frank Calaprice; R Cavaletti; G. Cecchet; M. Chen; Nicholas C. Darnton; A deBari; M. Deutsch; F. Elisei; F. von Feilitzsch; C. Galbiati; A. Garagiola; F. Gatti; M. Giammarchi; D. Giugni; T. Goldbrunner; A. Golubchikov; A. Goretti; S Grabar; T. Hagner; F. X. Hartmann; R. von Hentig

A 4.8 m3 unsegmented liquid scintillation detector at the underground Laboratori Nazionali del Gran Sasso has shown the feasibility of multi-ton low-background detectors operating to energies as low as 250 keV. Detector construction and the handling of large volumes of liquid scintillator to minimize the background are described. The scintillator, 1.5 g PPO/L-pseudocumene, is held in a flexible nylon vessel shielded by 1000 t of purified water. The active detector volume is viewed by 100 photomultipliers, which measure time and charge for each event, from which energy, position and pulse shape are deduced. On-line purification of the scintillator by water extraction, vacuum distillation and nitrogen stripping removed radioactive impurities. Upper limits were established of < 10−7 Bq/kg-scintillator for events with energies 250 keV < E < 800 keV, and < 10−9 Bq/kg-scintillator due to the decay products of uranium and thorium. The isotopic abundance of 14C12C in the scintillator was shown to be approximately 10−18 by extending the energy window of the detector to 25–250 keV. The 14C abundance and uranium and thorium levels in the CTF are compatible with the Borexino Solar Neutrino Experiment.


Physics Letters B | 1994

GALLEX results from the first 30 solar neutrino runs

P. Anselmann; E. Bellotti; R.W. Stoenner; M. Spiro; E. Henrich; L. Paoluzi; E. Fiorini; S. d'Angelo; R. von Ammon; P. Belli; C. Schlosser; Ernst Pernicka; O. Cremonesi; L. Stieglitz; R.L. Mössbauer; R. Bernabei; R. Wink; K. Hellriegel; G. Heusser; I. Dostrovsky; I. Carmi; J.K. Rowley; F. Weirich; C. Bacci; F.X. Hartmann; U. Schanda; J. Weneser; F. von Feilitzsch; S. Pezzoni; M. Wojcik

Abstract We report new GALLEX solar neutrino results from 15 runs covering 406 days (live time) within the exposure period 19 August 1992–13 October 1993 (“GALLEX II”). With counting data considered until 4 January 1994, the new result is [78±13 (stat.) ±5 (stat.)] SNU (1σ). It confirms our previous result for the 15 initial runs (“GALLEX I”) of [81±17( stat .)±9( syst .)] SNU. After two years of recording the solar neutrino flux with the GALLEX detector the combined result from 30 solar runs (GALLEX I + GALLEX II) is [79±10( stat .)±6( syst .)] SNU (1 σ ). In addition, 19 “blank” runs gave the expected null result. GALLEX neutrino experiments are continuing.


Physics Letters B | 1992

Implications of the GALLEX determination of the solar neutrino flux

P. Anselmann; E. Bellotti; R.W. Stoenner; M. Spiro; E. Henrich; U. Roenn; L. Paoluzi; E. Fiorini; S. d'Angelo; R. von Ammon; P. Belli; C. Schlosser; Ernst Pernicka; O. Cremonesi; R.L. Mössbauer; R. Bernabei; R. Wink; G. Heusser; I. Dostrovsky; I. Carmi; J.K. Rowley; C. Bacci; F.X. Hartmann; U. Schanda; J. Weneser; F. von Feilitzsch; S. Pezzoni; M. Wojcik; M. Cribier; S. Charbit

Abstract The GALLEX result 83 ± 19 (stat.) ± 8 (syst.) SNU is two standard deviations below the predictions of stellar model calculations (124–132 SNU). To fit this result together with those of the chlorine and Kamiokande experiments requires severe stretching of solar models but does not rule out such a procedure, leaving the possibility of massless neutrinos. It clearly implies that the pp neutrinos have been detected. The Mikheyev-Smirnov-Wolfenstein (MSW) mechanism provides a good fit, and the GALLEX result fixes the Δm 2 and sin 2 2 θ parameters in two very confined ranges (around Δm 2 = 6 × 10 −6 eV 2 and sin 2 2 θ = 7 × 10 −3 and around Δm 2 = 8 × 10 −6 eV 2 and sin 2 2 θ = 0.6). Explanations of the solar neutrino problems based on the decay or magnetic interactions of neutrinos are disfavoured.

Collaboration


Dive into the G. Heusser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Giammarchi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Researchain Logo
Decentralizing Knowledge