G. I. de Zubicaray
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. I. de Zubicaray.
Molecular Psychiatry | 2016
Lianne Schmaal; Dick J. Veltman; T G M van Erp; Philipp G. Sämann; Thomas Frodl; Neda Jahanshad; Elizabeth Loehrer; Henning Tiemeier; A. Hofman; Wiro J. Niessen; Meike W. Vernooij; M. A. Ikram; K. Wittfeld; H. J. Grabe; A Block; K. Hegenscheid; Henry Völzke; D. Hoehn; Michael Czisch; Jim Lagopoulos; Sean N. Hatton; Ian B. Hickie; Roberto Goya-Maldonado; Bernd Krämer; Oliver Gruber; Baptiste Couvy-Duchesne; Miguel E. Rentería; Lachlan T. Strike; N T Mills; G. I. de Zubicaray
The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical characteristics and brain morphology. To address this, we meta-analyzed three-dimensional brain magnetic resonance imaging data from 1728 MDD patients and 7199 controls from 15 research samples worldwide, to identify subcortical brain volumes that robustly discriminate MDD patients from healthy controls. Relative to controls, patients had significantly lower hippocampal volumes (Cohen’s d=−0.14, % difference=−1.24). This effect was driven by patients with recurrent MDD (Cohen’s d=−0.17, % difference=−1.44), and we detected no differences between first episode patients and controls. Age of onset ⩽21 was associated with a smaller hippocampus (Cohen’s d=−0.20, % difference=−1.85) and a trend toward smaller amygdala (Cohen’s d=−0.11, % difference=−1.23) and larger lateral ventricles (Cohen’s d=0.12, % difference=5.11). Symptom severity at study inclusion was not associated with any regional brain volumes. Sample characteristics such as mean age, proportion of antidepressant users and proportion of remitted patients, and methodological characteristics did not significantly moderate alterations in brain volumes in MDD. Samples with a higher proportion of antipsychotic medication users showed larger caudate volumes in MDD patients compared with controls. This currently largest worldwide effort to identify subcortical brain alterations showed robust smaller hippocampal volumes in MDD patients, moderated by age of onset and first episode versus recurrent episode status.
Journal of Neurology, Neurosurgery, and Psychiatry | 2006
Stephen E. Rose; Katie L. McMahon; Andrew L. Janke; Brona S. O'Dowd; G. I. de Zubicaray; Mark Strudwick; Jonathan B. Chalk
Background: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. Objectives: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. Methods: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. Results: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital–parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson’s correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. Conclusions: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer’s disease.
Neuropsychologia | 2000
G. I. de Zubicaray; C Andrew; Fernando Zelaya; Steven Williams; C. Dumanoir
In the present study we utilised functional magnetic resonance imaging (fMRI) to examine cerebral activation during performance of a classic motor task in which response suppression load was parametrically varied. Linear increases in activity were observed in a distributed network of regions across both cerebral hemispheres, although with more extensive involvement of the right prefrontal cortex. Activated regions included prefrontal, parietal and occipitotemporal cortices. Decreasing activation was similarly observed in a distributed network of regions. These response forms are discussed in terms of an increasing requirement for visual cue discrimination and suppression/selection of motor responses, and a decreasing probability of the occurrence of non-target stimuli and attenuation of a prepotent tendency to respond. The results support recent proposals for a dominant role for the right-hemisphere in performance of motor response suppression tasks that emphasise the importance of the right prefrontal cortex.
IEEE Transactions on Medical Imaging | 2008
Ming-Chang Chiang; Alex D. Leow; Andrea D. Klunder; Rebecca A. Dutton; Marina Barysheva; Stephen E. Rose; Katie L. McMahon; G. I. de Zubicaray; Arthur W. Toga; Paul M. Thompson
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Molecular Psychiatry | 2017
Lianne Schmaal; D. P. Hibar; Philipp G. Sämann; Geoffrey B. Hall; Bernhard T. Baune; Neda Jahanshad; J W Cheung; T G M van Erp; Daniel Bos; M. A. Ikram; Meike W. Vernooij; Wiro J. Niessen; Henning Tiemeier; A Hofman; K. Wittfeld; H. J. Grabe; Deborah Janowitz; R. Bülow; M. Selonke; Henry Völzke; Dominik Grotegerd; Udo Dannlowski; V. Arolt; Nils Opel; W Heindel; H Kugel; D. Hoehn; Michael Czisch; Baptiste Couvy-Duchesne; Miguel E. Rentería
The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen’s d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.
Magnetic Resonance in Medicine | 2009
Alex D. Leow; Siwei Zhu; Liang Zhan; Katie L. McMahon; G. I. de Zubicaray; M. Meredith; Margaret J. Wright; Arthur W. Toga; Paul M. Thompson
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion‐sensitized gradients along a minimum of six directions, second‐order tensors (represented by three‐by‐three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high‐angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues. Magn Reson Med 61:205–214, 2009.
Journal of Cognitive Neuroscience | 2001
Virginia Ng; Edward T. Bullmore; G. I. de Zubicaray; A. Cooper; John Suckling; Steven Williams
With the advent of functional neuroimaging techniques, in particular functional magnetic resonance imaging (fMRI), we have gained greater insight into the neural correlates of visuospatial function. However, it may not always be easy to identify the cerebral regions most specifically associated with performance on a given task. One approach is to examine the quantitative relationships between regional activation and behavioral performance measures. In the present study, we investigated the functional neuroanatomy of two different visuospatial processing tasks, judgement of line orientation and mental rotation Twenty-four normal participants were scanned with fMRI using blocked periodic designs for experimental task presentation. Accuracy and reaction time (RT) to each trial of both activation and baseline conditions in each experiment was recorded. Both experiments activated dorsal and ventral visual cortical areas as well as dorsolateral prefrontal cortex. More regionally specific associations with task performance were identified by estimating the association between (sinusoidal) power of functional response and mean RT to the activation condition; a permutation test based on spatial statistics was used for inference. There was significant behavioral-physiological association in right ventral extrastriate cortex for the line orientation task and in bilateral (predominantly right) superior parietal lobule for the mental rotation task. Comparable associations were not found between power of response and RT to the baseline conditions of the tasks. These data suggest that one region in a neurocognitive network may be most strongly associated with behavioral performance and this may be regarded as the computationally least efficient or rate-limiting node of the network.
Neuropsychologia | 2000
G. I. de Zubicaray; Fernando Zelaya; C Andrew; Steven Williams; Edward T. Bullmore
Cerebral activation associated with performance on a novel task involving two conditions was investigated with functional magnetic resonance imaging (fMRI). In the response initiation condition, subjects nominated the general superordinate category to which each of a series of exemplars (concrete nouns) belonged. In the response suppression condition, subjects were required to nominate a general superordinate category to which each exemplar did not belong, with the instruction that they were not to nominate the same category response twice in a row. Both conditions produced distinct patterns of activation relative to an articulation control condition employing identical stimuli. When initiation and suppression conditions were directly compared, response suppression produced activation in the right frontal pole, orbital frontal cortex and anterior cingulate, left dorsolateral prefrontal cortex and posterior cingulate, and bilaterally in the precuneus, visual association cortex and cerebellum. Response latencies were significantly longer in the suppression condition. Two broadly-defined strategies associated with the correct production of words during the suppression condition were a self-ordered selection from among the superordinate categories identified during the first section of the task and the generation of novel category responses. The neuroanatomical correlates of response initiation, suppression and strategy use are discussed, as are the respective roles of response suppression and strategy generation.
Molecular Psychiatry | 2011
Janet L. Stein; Derrek P. Hibar; Sarah K. Madsen; M. Khamis; Katie L. McMahon; G. I. de Zubicaray; Narelle K. Hansell; Grant W. Montgomery; Nicholas G. Martin; Margaret J. Wright; Andrew J. Saykin; Clifford R. Jack; Michael W. Weiner; Arthur W. Toga; Paul M. Thompson
The caudate is a subcortical brain structure implicated in many common neurological and psychiatric disorders. To identify specific genes associated with variations in caudate volume, structural magnetic resonance imaging and genome-wide genotypes were acquired from two large cohorts, the Alzheimers Disease NeuroImaging Initiative (ADNI; N=734) and the Brisbane Adolescent/Young Adult Longitudinal Twin Study (BLTS; N=464). In a preliminary analysis of heritability, around 90% of the variation in caudate volume was due to genetic factors. We then conducted genome-wide association to find common variants that contribute to this relatively high heritability. Replicated genetic association was found for the right caudate volume at single-nucleotide polymorphism rs163030 in the ADNI discovery sample (P=2.36 × 10−6) and in the BLTS replication sample (P=0.012). This genetic variation accounted for 2.79 and 1.61% of the trait variance, respectively. The peak of association was found in and around two genes, WDR41 and PDE8B, involved in dopamine signaling and development. In addition, a previously identified mutation in PDE8B causes a rare autosomal-dominant type of striatal degeneration. Searching across both samples offers a rigorous way to screen for genes consistently influencing brain structure at different stages of life. Variants identified here may be relevant to common disorders affecting the caudate.
international symposium on biomedical imaging | 2002
Paul M. Thompson; Kiralee M. Hayashi; G. I. de Zubicaray; Andrew L. Janke; Stephen E. Rose; James Semple; David M. Doddrell; Tyrone D. Cannon; Arthur W. Toga
We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this problem in two stages. First, we develop a cortical pattern matching approach, based on metrically covariant partial differential equations (PDEs), to associate corresponding regions of cortex in an MRI brain image database (N=102 scans). Second, these high-dimensional deformation maps are used to transfer within-subject cortical signals, including measures of gray matter distribution, shape asymmetries, and degenerative rates, to a common anatomic template for statistical analysis. We illustrate these techniques in two applications: (1) mapping dynamic patterns of gray matter loss in longitudinally scanned Alzheimers disease patients; and (2) mapping genetic influences on brain structure. We extend statistics used widely in behavioral genetics to cortical manifolds. Specifically, we introduce methods based on h-squared distributed random fields to map hereditary influences on brain structure in human populations.