Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. I. Karavaiko is active.

Publication


Featured researches published by G. I. Karavaiko.


Microbiology | 2003

[Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium].

V. S. Melamud; T. A. Pivovarova; T. P. Tourova; T. V. Kolganova; G. A. Osipov; Anatoly M. Lysenko; T. F. Kondrat'eva; G. I. Karavaiko

In the course of pilot industrial testing of a biohydrometallurgical technology for processing gold-arsenic concentrate obtained from the Nezhdaninskoe ore deposit (East Siberia, Sakha (Yakutiya)), a new gram-positive rod-shaped spore-forming moderately thermophilic bacterium (designated as strain N1) oxidizing Fe2+, S0, and sulfide minerals in the presence of yeast extract (0.02%) was isolated from a dense pulp. Physiologically, strain N1 differs from previously described species of the genus Sulfobacillus in having a somewhat higher optimal growth temperature (55°C). Unlike the type strain of S. thermosulfidooxidans, strain N1 could grow on a medium with 1 mM thiosulfate or sodium tetrathionate as a source of energy only within several passages and failed to grow in the absence of an inorganic energy source on media with sucrose, fructose, glucose, reduced glutathione, alanine, cysteine, sorbitol, sodium acetate, or pyruvate. The G+C content of the DNA of strain N1 was 48.2 mol %. The strain showed 42% homology after DNA–DNA hybridization with the type strain of S. thermosulfidooxidans and 10% homology with the type strain of S. acidophilus. The isolate differed from previously studied strains of S. thermosulfidooxidans in the structure of its chromosomal DNA (determined by the method of pulsed-field gel electrophoresis), which remained stable as growth conditions were changed. According to the results of the 16S rRNA gene analysis, the new strain forms a single cluster with the bacteria of the species Sulfobacillus thermosulfidooxidans (sequence similarity of 97.9–98.6%). Based on these genetic and physiological features, strain N1 is described as a new species Sulfobacillus sibiricus sp. nov.


Microbiology | 2006

Lithotrophic microorganisms of the oxidative cycles of sulfur and iron

G. I. Karavaiko; G. A. Dubinina; T. F. Kondrat’eva

The review deals with sulfur bacteria (the first chemolithotrophs ever studied) and with the acidophilic bacteria of sulfur and iron cycles which were investigated as a result of Winogradsky’s discovery. The diversity of these organisms and the factors and mechanism of its origin are emphasized; their metabolic functions and nutritional regulation are discussed.


Biochimica et Biophysica Acta | 2002

β-D-Glucopyranosyl caldarchaetidylglycerol is the main lipid of the acidophilic, mesophilic, ferrous iron-oxidising archaeon Ferroplasma acidiphilum

Stanislav G. Batrakov; Tatiana A. Pivovarova; Stanislav E. Esipov; Vladimir I Sheichenko; G. I. Karavaiko

Chloroform-methanol-extractable lipids account for about 5% by weight of dry cells of the acidophilic, autotrophic, mesophilic, ferrous compound-oxidising, cell wall-less archaeon Ferroplasma acidiphilum strain Y(T), about 90% of these being contributed by phospholipids and glycophospholipids. The most abundant constituent (about 55% of total lipids) was purified by DEAE cellulose and silica gel column chromatography. By means of matrix-assisted laser desorption ionisation mass spectrometry, infrared spectroscopy, (1)H-nuclear magnetic resonance spectroscopy, and chemical degradation experiments it was established to be beta-D-glucopyranosyl caldarchaetidylglycerol, the isopranyl chains of which have a cyclopentane ring each.


Microbiology | 2002

[Phenotypic features of Ferroplasma acidiphilum strains Yt and Y-2].

T. A. Pivovarova; T. F. Kondrat'eva; S. G. Batrakov; Stanislav E. Esipov; Vladimir I Sheichenko; S. A. Bykova; Anatoly M. Lysenko; G. I. Karavaiko

Earlier, we described a new family of mesophilic, strictly autotrophic Fe2+-oxidizing archaebacteria, Ferroplasmaceae, which belongs to the order Thermoplasmales and includes the genus Ferroplasma and the species F. acidiphilum (strain YT) [1]. The present work is concerned with a comparative study of phenotypic characteristics of the type strain YТ and a new strain, F. acidiphilum Y-2, isolated from dense pulps during oxidation of gold-containing arsenopyrite/pyrite concentrates from the Bakyrchikskoe (Kazakhstan) and Olimpiadinskoe (Krasnoyarsk krai) ore deposits, respectively. The G+C content of DNA from strains YT and Y-2 comprised 35.1 and 35.2 mol %, respectively; the level of DNA–DNA homology between the strains was 84%. Restriction profiles of chromosomal DNA from both strains exhibited a similarity coefficient of 0.87. Genotypic characteristics of these strains indicate their affiliation to the same species. The cells of both strains are polymorphic and lack cell walls. Strains of F. acidiphilum oxidized ferrous iron and pyrite as the sole source of energy and fixed carbon dioxide as the sole carbon source. The strains required yeast extract as a growth factor. Optimum pH for cell growth ranged from 1.7 to 1.8; the temperature optima for the growth of strains YT and Y-2 were 34–36 and 40–42°С, respectively. Comparative analysis of the total lipids revealed their close similarity in the strains; two glycophospholipids comprised 90% of the total lipids: lipid I, β-D-glucopyranosylcaldarchaetidylglycerol (about 55%), and lipid II, trihexosylcaldarchaetidylglycerol (26%), whose isopranyl chains contained no cyclopentane rings. The carbohydrate fraction of lipid I hydrolysate contained only D-glucose, whereas hydrolysate of lipid II contained both D-glucose and D-galactose in a molar ratio of 2 : 1. Thus, it was established that the intraspecies phylogenetic divergence within F. acidiphilum is manifested in the two strains by different temperature optima against a background of similarity in other phenotypic properties.


Microbiology | 2000

Microbial degradation of cyanide and thiocyanate

G. I. Karavaiko; T. F. Kondrat’eva; E. E. Savari; N. V. Grigor’eva; Z. A. Avakyan

The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN− and SCN− was studied. It was shown that the degradation of CN− is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN−, regardless of its initial concentration. When CN− and SCN− were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN− under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN− and SCN− are utilized by bacteria solely as nitrogen sources. The mechanism of CN− and SCN− degradation by the microbial community is discussed.


Microbiology | 2003

Activity of the Enzymes of Carbon Metabolism in Sulfobacillus sibiricus under Various Conditions of Cultivation

L. M. Zakharchuk; M. A. Egorova; I. A. Tsaplina; T. I. Bogdanova; E. N. Krasil'nikova; V. S. Melamud; G. I. Karavaiko

The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. The glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.


Microbiology | 2001

Growth and Carbohydrate Metabolism of Sulfobacilli

G. I. Karavaiko; E. N. Krasil'nikova; I. A. Tsaplina; T. I. Bogdanova; L. M. Zakharchuk

The moderately thermophilic acidophilic bacteria Sulfobacillus thermosulfidooxidans, strain 1269, S. thermosulfidooxidanssubsp. “asporogenes,” strain 41, and the thermotolerant strain S. thermosulfidooxidanssubsp. “thermotolerans” K1 prefer mixotrophic growth conditions (the concomitant presence of ferrous iron, thiosulfate, and organic compounds in the medium). In heterotrophic and autotrophic growth conditions, these sulfobacilli can grow over only a few culture transfers. In cell-free extracts of these sulfobacilli, key enzymes of the Embden–Meyerhof–Parnas, pentose-phosphate, and Entner–Doudoroff pathways were found. The role of a particular pathway depended on the cultivation conditions. All of the enzymes assayed were most active under mixotrophic conditions in the presence of Fe2+and glucose, suggesting the operation of all of the three major pathways of carbohydrate metabolism under these conditions. However, the operation of the Entner–Doudoroff pathway in strain 41 was restricted under mixotrophic conditions. After the first culture transfer from mixotrophic to heterotrophic conditions, the utilization of glucose occurred only via the Embden–Meyerhof–Parnas and Entner–Doudoroff pathways. After the first culture transfer from mixotrophic to autotrophic conditions, the activity of carbohydrate metabolism enzymes decreased in all of the strains studied; in strain K1, only the glycolytic pathway remained operative. The high activity of fructose-bisphosphate aldolase, remaining in strain 41 cells under these conditions, suggests the involvement of this enzyme in the reactions of the Calvin cycle or of gluconeogenesis.


Microbiology | 2006

Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains

N. V. Grigor’eva; T. F. Kondrat’eva; E. N. Krasil’nikova; G. I. Karavaiko

The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN− and SCN− into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH4+ was observed. Due to the high rate of their utilization, NH3, NH4+, and CNO− were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN− or SCN−. Both Pseudomonas strains decomposed SCN− via cyanate production. The cyanase activity was 0.75 µmol/(min mg protein) for P. putida strain 21 and 1.26 μmol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN− but absent in cells grown with NH4+. Strain 21 of P. putida was a more active CN− decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN− and SCN− decomposition. The terminal sulfur products of SCN− decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN− and SCN−) and sulfur (SCN−). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained.


Microbiology | 2000

Investigation of the Phylogenetic Position of Aerobic, Moderately Thermophilic Bacteria Oxidizing Fe2+, S0, and Sulfide Minerals and Affiliated to the Genus Sulfobacillus

G. I. Karavaiko; T. P. Tourova; I. A. Tsaplina; T. I. Bogdanova

At present, the genus Sulfobacillus includes three species of chemolithotrophic, acidophilic, moderately thermophilic or mesophilic bacteria. These are the type species of the genus S. thermosulfidooxidans (strains VKM B-1269 = DSM 9293 T and BC1) [1, 2], S. acidophilus (strains NAL T and ALV) [2], and S. disulfidooxidans (strain SD-11 T ) [3]. Based on their phenotypic properties, two additional strains, 41 and K1, were assigned as subspecies of S. thermosulfidooxidans , and named S. thermosulfidooxidans subsp. “ asporogenes ” [4] and S. thermosulfidooxidans subsp. “ thermotolerans ” [5], respectively. Several unidentified strains (C-MT1, YTH2, and YTH1) were also assigned to the genus Sulfobacillus based on 16S rDNA sequence data [6, 7]. Phylogenetic analysis demonstrated that Sulfobacillus clusters with species of the genus Alicyclobacillus [3, 8].


Microbiology | 2002

Strain Polymorphism of the Plasmid Profiles in Acidithiobacillus ferrooxidans

T. F. Kondrat'eva; S. N. Ageeva; L. N. Muntyan; T. A. Pivovarova; G. I. Karavaiko

Plasmid profiles were studied in 27 Acidithiobacillus ferrooxidans strains isolated from different geographic zones and substrates differing in composition of the main sulfide minerals, and also in experimentally obtained strains with acquired enhanced resistance to the ions of heavy metals (Fe, Ni, Cu, Zn, As). In 16 out of 20 strains isolated from different substrates, one to four 2- to 20-kb and larger plasmids were revealed. Plasmids were found in all five strains isolated from gold-containing pyrite–arsenopyrite ores and concentrates, in nine of 11 strains isolated from the ores and concentrates containing nonferrous metals, and in two of four strains isolated from the oxidation substrates of simple composition (mine waters, pyritized coals, active sludge). Changes in the plasmid profiles in some A. ferrooxidans strains (TFZ, TFI-Fe, TFV-1-Cu) with experimentally enhanced resistance to Zn2+, Fe3+, and Cu2+, respectively, were noted as compared with the initial strains. After 30 passages on a S0-containing medium, strain TFBk showed changes in the copy number of plasmids. The role of plasmids in the processes of oxidation of energy substrates and in the acquired enhanced resistance to heavy metal ions is discussed.

Collaboration


Dive into the G. I. Karavaiko's collaboration.

Top Co-Authors

Avatar

T. F. Kondrat'eva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. A. Pivovarova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

I. A. Tsaplina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. I. Bogdanova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. S. Melamud

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. N. Ageeva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anatoly M. Lysenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge