Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Jeffrey Snyder is active.

Publication


Featured researches published by G. Jeffrey Snyder.


Nature Materials | 2008

Complex thermoelectric materials.

G. Jeffrey Snyder; Eric S. Toberer

Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.


Science | 2008

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States

Joseph P. Heremans; Vladimir Jovovic; Eric S. Toberer; Ali Saramat; Ken Kurosaki; Anek Charoenphakdee; Shinsuke Yamanaka; G. Jeffrey Snyder

The efficiency of thermoelectric energy converters is limited by the material thermoelectric figure of merit (zT). The recent advances in zT based on nanostructures limiting the phonon heat conduction is nearing a fundamental limit: The thermal conductivity cannot be reduced below the amorphous limit. We explored enhancing the Seebeck coefficient through a distortion of the electronic density of states and report a successful implementation through the use of the thallium impurity levels in lead telluride (PbTe). Such band structure engineering results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin. Use of this new physical principle in conjunction with nanostructuring to lower the thermal conductivity could further enhance zT and enable more widespread use of thermoelectric systems.


Nature | 2011

Convergence of electronic bands for high performance bulk thermoelectrics

Yanzhong Pei; Xiaoya Shi; Aaron D. LaLonde; Heng Wang; Lidong Chen; G. Jeffrey Snyder

Thermoelectric generators, which directly convert heat into electricity, have long been relegated to use in space-based or other niche applications, but are now being actively considered for a variety of practical waste heat recovery systems—such as the conversion of car exhaust heat into electricity. Although these devices can be very reliable and compact, the thermoelectric materials themselves are relatively inefficient: to facilitate widespread application, it will be desirable to identify or develop materials that have an intensive thermoelectric materials figure of merit, zT, above 1.5 (ref. 1). Many different concepts have been used in the search for new materials with high thermoelectric efficiency, such as the use of nanostructuring to reduce phonon thermal conductivity, which has led to the investigation of a variety of complex material systems. In this vein, it is well known that a high valley degeneracy (typically ≤6 for known thermoelectrics) in the electronic bands is conducive to high zT, and this in turn has stimulated attempts to engineer such degeneracy by adopting low-dimensional nanostructures. Here we demonstrate that it is possible to direct the convergence of many valleys in a bulk material by tuning the doping and composition. By this route, we achieve a convergence of at least 12 valleys in doped PbTe1 − xSex alloys, leading to an extraordinary zT value of 1.8 at about 850 kelvin. Band engineering to converge the valence (or conduction) bands to achieve high valley degeneracy should be a general strategy in the search for and improvement of bulk thermoelectric materials, because it simultaneously leads to a high Seebeck coefficient and high electrical conductivity.


Science | 2016

Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe

Li-Dong Zhao; Gangjian Tan; Shiqiang Hao; Jiaqing He; Yanling Pei; Hang Chi; Heng Wang; Shengkai Gong; Huibin Xu; Vinayak P. Dravid; Ctirad Uher; G. Jeffrey Snyder; C. Wolverton; Mercouri G. Kanatzidis

Heat conversion gets a power boost Thermoelectric materials convert waste heat into electricity, but often achieve high conversion efficiencies only at high temperatures. Zhao et al. tackle this problem by introducing small amounts of sodium to the thermoelectric SnSe (see the Perspective by Behnia). This boosts the power factor, allowing the material to generate more energy while maintaining good conversion efficiency. The effect holds across a wide temperature range, which is attractive for developing new applications. Science, this issue p. 141; see also p. 124 A thermoelectric derived by sodium doping of tin selenide has a high power factor and conversion efficiency over a wide temperature range. [Also see Perspective by Behnia] Thermoelectric technology, harvesting electric power directly from heat, is a promising environmentally friendly means of energy savings and power generation. The thermoelectric efficiency is determined by the device dimensionless figure of merit ZTdev, and optimizing this efficiency requires maximizing ZT values over a broad temperature range. Here, we report a record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals. The exceptional performance arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe. SnSe is a robust thermoelectric candidate for energy conversion applications in the low and moderate temperature range.


Science | 2015

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics

Sang Il Kim; Kyu Hyoung Lee; Hyeon A. Mun; Hyun Sik Kim; Sung Woo Hwang; Jong Wook Roh; Dae Jin Yang; Weon Ho Shin; Xiang Shu Li; Young Hee Lee; G. Jeffrey Snyder; Sung Wng Kim

Squeezing out efficient thermoelectrics Thermoelectric materials hold the promise of converting waste heat into electricity. The challenge is to develop high-efficiency materials that are not too expensive. Kim et al. suggest a pathway for developing inexpensive thermoelectrics. They show a dramatic improvement of efficiency in bismuth telluride samples by quickly squeezing out excess liquid during compaction. This method introduces grain boundary dislocations in a way that avoids degrading electrical conductivity, which makes a better thermoelectric material. With the potential for scale-up and application to cheaper materials, this discovery presents an attractive path forward for thermoelectrics. Science, this issue p. 109 Pressure-assisted liquid-phase compaction allows synthesis of high–conversion efficiency thermoelectric materials. The widespread use of thermoelectric technology is constrained by a relatively low conversion efficiency of the bulk alloys, which is evaluated in terms of a dimensionless figure of merit (zT). The zT of bulk alloys can be improved by reducing lattice thermal conductivity through grain boundary and point-defect scattering, which target low- and high-frequency phonons. Dense dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi0.5Sb1.5Te3 (bismuth antimony telluride) effectively scatter midfrequency phonons, leading to a substantially lower lattice thermal conductivity. Full-spectrum phonon scattering with minimal charge-carrier scattering dramatically improved the zT to 1.86 ± 0.15 at 320 kelvin (K). Further, a thermoelectric cooler confirmed the performance with a maximum temperature difference of 81 K, which is much higher than current commercial Peltier cooling devices.


Applied Physics Letters | 2005

Macroscopic thermoelectric inhomogeneities in (AgSbTe 2) x (PbTe) 1-x

Nancy Chen; Franck Gascoin; G. Jeffrey Snyder; Eckhard Müller; Gabriele Karpinski; Christian Stiewe

Exceptionally high thermoelectric figure of merit (zT>2), has been reported for (Ag1−ySbTe2)0.05(PbTe)0.95, which may involve the nanoscale microstructure. However, conflicting reports on the same materials claim only zT of 1 or less. Here we show that (Ag1−ySbTe2)0.05(PbTe)0.95 materials are multiphase on the scale of millimeters despite appearing homogeneous by x-ray diffraction and routine electron microscopy. Using a scanning Seebeck microprobe, we find significant variation of Seebeck coefficient (including both n-type and p-type behavior in the same sample) that can explain the discrepancy in reported zT. More homogeneous samples can be prepared with faster cooling rates.


Energy and Environmental Science | 2011

High thermoelectric figure of merit in heavy hole dominated PbTe

Yanzhong Pei; Aaron D. LaLonde; Shiho Iwanaga; G. Jeffrey Snyder

Thermoelectric transport properties of p-type PbTe:Na, with high hole concentrations of approximately 1020 cm−3, are reinvestigated from room temperature to 750 K. The greatly enhanced Seebeck coefficient at these doping levels can be understood by the presence of a sharp increase in the density of states around the Fermi level. As a result, the thermoelectric figure of merit, zT, reaches ∼1.4 at 750 K. The influence of these heavy hole carriers may contribute to a similarly high zT observed in related p-type PbTe-based systems such as Tl-doped PbTe and nanostructured composite materials.


Advanced Materials | 2011

Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe

Heng Wang; Yanzhong Pei; Aaron D. LaLonde; G. Jeffrey Snyder

PbSe was expected to have a smaller bandgap and higher thermalconductivity than PbTe. Instead, these values are about the same at high temperature leading to comparable thermoelectric figure of merit, with zT> 1 achieved in heavily doped p-type PbSe.


Advanced Materials | 2014

High thermoelectric performance in non-toxic earth-abundant copper sulfide

Ying He; Tristan Day; Tiansong Zhang; Huili Liu; Xun Shi; Lidong Chen; G. Jeffrey Snyder

A new type of high performance thermoelectric material Cu_(2-x)S composed of non-toxic and earth-abundant elements Cu and S is reported. Cu_(2-x)S surprisingly has lower thermal conductivity and more strikingly reduced specific heat compared to the heavier Cu_(2)Se, leading to an increased zT to 1.7.


APL Materials | 2015

Characterization of Lorenz number with Seebeck coefficient measurement

Hyun Sik Kim; Zachary M. Gibbs; Yinglu Tang; Heng Wang; G. Jeffrey Snyder

In analyzing zT improvements due to lattice thermal conductivity (κ_L ) reduction, electrical conductivity (σ) and total thermal conductivity (κ_(Total)) are often used to estimate the electronic component of the thermal conductivity (κ_E) and in turn κ_L from κ_L = ∼ κ_(Total) − LσT. The Wiedemann-Franz law, κ_E = LσT, where L is Lorenz number, is widely used to estimate κ_E from σ measurements. It is a common practice to treat L as a universal factor with 2.44 × 10^(−8) WΩK^(−2) (degenerate limit). However, significant deviations from the degenerate limit (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where L converges to 1.5 × 10^(−8) WΩK^(−2) for acoustic phonon scattering. The decrease in L is correlated with an increase in thermopower (absolute value of Seebeck coefficient (S)). Thus, a first order correction to the degenerate limit of L can be based on the measured thermopower, |S|, independent of temperature or doping. We propose the equation: L=1.5+exp[−_(|S|)_(116)] (where L is in 10^(−8) WΩK^(−2) and S in μV/K) as a satisfactory approximation for L. This equation is accurate within 5% for single parabolic band/acoustic phonon scattering assumption and within 20% for PbSe, PbS, PbTe, Si_(0.8) Ge _(0.2) where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for L rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity.

Collaboration


Dive into the G. Jeffrey Snyder's collaboration.

Top Co-Authors

Avatar

Heng Wang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Pierre Fleurial

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Zevalkink

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zachary M. Gibbs

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Teruyuki Ikeda

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge