Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. K. Garipov is active.

Publication


Featured researches published by G. K. Garipov.


Cosmic Research | 2007

First results of investigating the space environment onboard the Universitetskii-Tatyana satellite

V. A. Sadovnichy; M. I. Panasyuk; S. Yu. Bobrovnikov; N. Vedenkin; N. A. Vlasova; G. K. Garipov; O. R. Grigorian; T. A. Ivanova; V. V. Kalegaev; P. A. Klimov; A. S. Kovtyukh; S. A. Krasotkin; N. V. Kuznetsov; S. N. Kuznetsov; E. A. Muravyeva; Irina N. Myagkova; N. N. Pavlov; R.A. Nymmik; V. L. Petrov; M. V. Podzolko; V. V. Radchenko; S.Ya. Reisman; I. A. Rubinshtein; M.O. Riazantseva; E. A. Sigaeva; E. N. Sosnovets; L.I. Starostin; A. V. Sukhanov; V. I. Tulupov; B. A. Khrenov

The complex of scientific pay load installed onboard the research and educational Universitetskii-Tatyana microsatellite of Moscow State University is described. The complex is designed to study charged particles in the near-earth space and ultraviolet emissions of the atmosphere. Data of the measurements of charged particle fluxes in the microsatellite orbit are presented, spectra are calculated, and the dynamics of penetration boundaries for protons of solar cosmic rays (SCR) during geomagnetic disturbances in 2005 is investigated. Intensities of the ultraviolet emission are measured in the entire range of variation of the atmospheric irradiation, as well as intensities of auroras in the polar regions of the Northern and Southern hemispheres. The experimental data on flashes of ultraviolet radiation (transient light phenomena in the upper atmosphere) are considered, and some examples of oscillograms of their temporal development and their distribution over geographical coordinates are presented.


Solar System Research | 2011

Investigations of the space environment aboard the Universitetsky-Tat’yana and Universitetsky-Tat’yana-2 microsatellites

V. A. Sadovnichy; M. I. Panasyuk; I. V. Yashin; V. O. Barinova; N. N. Veden’kin; N. A. Vlasova; G. K. Garipov; O. R. Grigoryan; T. A. Ivanova; V. V. Kalegaev; P. A. Klimov; A. S. Kovtyukh; S. A. Krasotkin; N. V. Kuznetsov; S. N. Kuznetsov; E. A. Murav’eva; Irina N. Myagkova; R.A. Nymmik; N. N. Pavlov; D. A. Parunakyan; A.N. Petrov; V. L. Petrov; M. V. Podzolko; V. V. Radchenko; S.Ya. Reizman; I. A. Rubinshtein; M. O. Ryazantseva; E. A. Sigaeva; E. N. Sosnovets; L.I. Starostin

The first results obtained through the university small satellites program developed at Moscow State University (MSU) are presented. The space environment was investigated aboard two MSU microsatellites designed for scientific and educational purposes, Universitetsky-Tat’yana and Universitetsky-Tat’yana-2. The scientific equipment is described to study charged particles in near Earth space and atmospheric radiations in ultraviolet, red, and infrared optical wavelength ranges. The dynamic properties of fluxes of charged particles in microsatellite orbits are studied and findings are presented regarding specific parameters of solar proton penetration during the geomagnetic disturbances. Experimental results are considered concerning flashes of ultraviolet (UV), red (R), and infrared (IR) radiation that are transient light phenomena in the upper atmosphere. The space educational MSU program developed on the basis of the Universitetsky-Tat’yana projects is reviewed.


OBSERVING ULTRAHIGH ENERGY COSMIC RAYS FROM SPACE AND EARTH: International Workshop | 2001

Space Program KOSMOTEPETL (project KLYPVE and TUS) for the study of extremely high energy cosmic rays

B. A. Khrenov; M. I. Panasyuk; V. V. Alexandrov; D. I. Bugrov; A. Cordero; G. K. Garipov; J. Linsley; O. Martinez; H. Salazar; O. A. Saprykin; A. Silaev; D. V. Surogatov; V. S. Syromyatnikov; L. Villaseñor; A. Zepeda

The scientific goal of the KOSMOTEPETL program is to observe and to study ultra high energy cosmic rays through the fluorescent tracks that they produce in the Earth atmosphere with the help of satellite based optical cameras based on the technology of a large mirror-concentrator of light. At low orbits (400–600 km) a mirror with an area of 400 m2 will allow us to observe neutrino induced horizontal tracks starting at the energy threshold of 1 EeV. With these neutrinos, which have to be produced in collisions of extreme energy cosmic rays (with energy >50 EeV) with background photons at distances >100 Mpc, the most distant cosmic ray sources will be revealed. Design of the TUS and KLYPVE detectors (the first detectors of the KOSMOTEPETL program with a mirror area 2 and 10 m2) is presented.


arXiv: Instrumentation and Methods for Astrophysics | 2015

The current status of orbital experiments for UHECR studies

M. I. Panasyuk; M. Casolino; G. K. Garipov; Toshikazu Ebisuzaki; P. Gorodetzky; B. A. Khrenov; P. A. Klimov; V. S. Morozenko; N. Sakaki; O. Saprykin; S. Sharakin; Yoshiyuki Takizawa; L. Tkachev; I. V. Yashin; M. Yu. Zotov

Two types of orbital detectors of extreme energy cosmic rays are being developed nowadays: (i) TUS and KLYPVE with reflecting optical systems (mirrors) and (ii) JEM-EUSO with high-transmittance Fresnel lenses. They will cover much larger areas than existing ground-based arrays and almost uniformly monitor the celestial sphere. The TUS detector is the pioneering mission developed in SINP MSU in cooperation with several Russian and foreign institutions. It has relatively small field of view (+/-4.5 deg), which corresponds to a ground area of 6.4x10^3 sq.km. The telescope consists of a Fresnel-type mirror-concentrator (~2 sq.m) and a photo receiver (a matrix of 16x16 photomultiplier tubes). It is to be deployed on the Lomonosov satellite, and is currently at the final stage of preflight tests. Recently, SINP MSU began the KLYPVE project to be installed on board of the Russian segment of the ISS. The optical system of this detector contains a larger primary mirror (10 sq.m), which allows decreasing the energy threshold. The total effective field of view will be at least +/-14 degrees to exceed the annual exposure of the existing ground-based experiments. Several configurations of the detector are being currently considered. Finally, JEM-EUSO is a wide field of view (+/-30 deg) detector. The optics is composed of two curved double-sided Fresnel lenses with 2.65 m external diameter, a precision diffractive middle lens and a pupil. The ultraviolet photons are focused onto the focal surface, which consists of nearly 5000 multi-anode photomultipliers. It is developed by a large international collaboration. All three orbital detectors have multi-purpose character due to continuous monitoring of various atmospheric phenomena. The present status of development of the TUS and KLYPVE missions is reported, and a brief comparison of the projects with JEM-EUSO is given.


IEEE Transactions on Geoscience and Remote Sensing | 2012

A New Type of Space Telescope for Observation of Extreme Lightning Phenomena in the Upper Atmosphere

Jue-Yeon Lee; J. E. Kim; G. W. Na; J. A. Jeon; S. Jeong; A. Jung; H. Y. Lee; J. W. Nam; J. E. Suh; G. K. Garipov; P. A. Klimov; B. A. Khrenov; M. I. Panasyuk; N. Vedenkin; I. H. Park

A new type of space telescope with a 3 mm × 3 mm Micro-Electro-Mechanical System (MEMS) micromirror array has been fabricated and launched into space. This telescope has unique features: a wide field of surveillance view, and fast zoom-in and tracking capabilities. Although the micromirror array area is small, the space telescope was capable of observing the space-time development of extreme lightning in the upper atmosphere. It fulfilled its purpose by proving the principles of a space telescope. The concept and technologies used in this telescope can be extended to large MEMS space telescopes for future missions for earth and space science, including gamma ray bursts and ultra high energy cosmic rays. The performance of the space telescope during the ground test before launch as well as its performance in space are here presented to demonstrate the fast zoom-in and tracking capabilities of the telescope.


Physics of Particles and Nuclei Letters | 2013

The TUS Fesnel mirror production and optical parameters measurement

G. K. Garipov; A. Grinyuk; V. Grebenyuk; P. A. Klimov; B. A. Khrenov; S. Porokhovoy; A. Puchkov; S. Sabirov; O. Saprykin; S. Sharakin; A. V. Skrypnik; M. Slunecka; A. Tkachenko; L. Tkachev; I. V. Yashin

The TUS space experiment is aimed to study energy spectrum, composition, and angular distribution of the Ultra-High Energy Cosmic Ray (UHECR) at E ∼ 1020 eV. The TUS mission is planned for operation at the end of 2012 at the dedicated “Mikhail Lomonosov” satellite. The TUS detector will measure the fluorescence and Cherenkov light radiated by EAS of the UHECR using the optical system—Fresnel mirror-concentrator of 7 modules of ∼2 m2 area in total. Production of the flight model of the optical system is in progress. Status of the Fresnel mirror production, the method, and results of their optical parameters measurement are presented.


Cosmic Research | 2016

Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part I: Description of the experiment

M. I. Panasyuk; S. I. Svertilov; V. V. Bogomolov; G. K. Garipov; V. O. Barinova; A. V. Bogomolov; N. N. Veden’kin; I.A. Golovanov; A.F. Iyudin; V. V. Kalegaev; P. A. Klimov; A. S. Kovtyukh; E. A. Kuznetsova; V. S. Morozenko; O. V. Morozov; I. N. Myagkova; V. L. Petrov; A. V. Prokhorov; G. V. Rozhkov; E. A. Sigaeva; B. A. Khrenov; I. V. Yashin; S. Klimov; D. I. Vavilov; V. A. Grushin; T. V. Grechko; V. V. Khartov; V. A. Kudryashov; S. V. Bortnikov; P. V. Mzhel’skiy

The program of physical studies on the Vernov satellite launched on July 8, 2014 into a polar (640 × 830 km) solar-synchronous orbit with an inclination of 98.4° is presented. We described the complex of scientific equipment on this satellite in detail, including multidirectional gamma-ray detectors, electron spectrometers, red and ultra-violet detectors, and wave probes. The experiment on the Vernov satellite is mainly aimed at a comprehensive study of the processes of generation of transient phenomena in the optical and gamma-ray ranges in the Earth’s atmosphere (such as high-altitude breakdown on runaway relativistic electrons), the study of the action on the atmosphere of electrons precipitated from the radiation belts, and low- and high-frequency electromagnetic waves of both space and atmospheric origin.


Bulletin of The Russian Academy of Sciences: Physics | 2017

Preliminary results from the TUS ultra-high energy cosmic ray orbital telescope: Registration of low-energy particles passing through the photodetector

P. A. Klimov; M. Yu. Zotov; N. P. Chirskaya; B. A. Khrenov; G. K. Garipov; M. I. Panasyuk; S. Sharakin; A. V. Shirokov; I. V. Yashin; A. Grinyuk; A. Tkachenko; L. Tkachev

The TUS telescope, part of the scientific equipment on board the Lomonosov satellite, is the world’s first orbital detector of ultra-high energy cosmic rays. Preliminary results from analyzing unexpected powerful signals that have been detected from the first days of the telescope’s operation are presented. These signals appear simultaneously in time intervals of around 1 μs in groups of adjacent pixels of the photodetector and form linear track-like sequences. The results from computer simulations using the GEANT4 software and the observed strong latitudinal dependence of the distribution of the events favor the hypothesis that the observed signals result from protons with energies of several hundred MeV to several GeV passing through the photodetector of the TUS telescope.


Bulletin of The Russian Academy of Sciences: Physics | 2015

The KLYPVE ultrahigh energy cosmic ray detector on board the ISS

G. K. Garipov; M. Yu. Zotov; P. A. Klimov; M. I. Panasyuk; O. Saprykin; L. Tkachev; S. A. Sharakin; B. A. Khrenov; I. V. Yashin

The current status of the KLYPVE orbital detector of ultrahigh energy cosmic rays, which is scheduled to be deployed on board the Russian module of the International Space Station, is discussed. The main focus is on describing possible optical systems for the instrument.


OBSERVING ULTRAHIGH ENERGY COSMIC RAYS FROM SPACE AND EARTH: International Workshop | 2001

Electronics for the KLYPVE Detector

G. K. Garipov; V. V. Alexandrov; D. I. Bugrov; A. Cordero; M. Cuautle; B. A. Khrenov; J. Linsley; O. Martinez; E. B. Moreno; M. I. Panasyuk; H. Salazar; O. A. Saprykin; A. Silaev; V. S. Syromyatnikov; L. Villaseñor; A. Zepeda

The KLYPVE optical detector on board the Russian segment of the ISS will observe 10 thousand km2 of the Earth atmosphere registering the extremely high energy cosmic ray (EHECR) particles producing fluorescent tracks in the atmosphere. In this article the design of the detector is presented, including: the Fresnel type mirror of 10 m2 area, the PMT retina of 2500 pixels, the pixel electronics, the data acquisition electronics, and the trigger system. The detector design is suited to conditions of the space experiment (wide range of temperature, short day-night cycle etc). The problem of selection of rare EHECR events in the presence of high intensity background light is discussed.

Collaboration


Dive into the G. K. Garipov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. A. Klimov

Moscow State University

View shared research outputs
Top Co-Authors

Avatar

I. V. Yashin

Moscow State University

View shared research outputs
Top Co-Authors

Avatar

I. H. Park

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar

A. Silaev

Moscow State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge