Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. K. Vostokin is active.

Publication


Featured researches published by G. K. Vostokin.


Nature | 2007

Chemical characterization of element 112

R. Eichler; N. V. Aksenov; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gäggeler; V. A. Gorshkov; F. Haenssler; M. G. Itkis; Andreas Laube; V. Ya. Lebedev; O. N. Malyshev; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; P. Rasmussen; S. V. Shishkin; A. V. Shutov; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin; M. Wegrzecki; A. V. Yeremin

The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of 283112 through the alpha decay of the short-lived 287114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of 283112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides.


Radiochimica Acta | 2010

Indication for a volatile element 114

R. Eichler; N. V. Aksenov; Yu.V. Albin; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gäggeler; V. A. Gorshkov; R. A. Henderson; Amanda M. Johnsen; J. M. Kenneally; V. Ya. Lebedev; O. N. Malyshev; K. J. Moody; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; A. G. Popeko; P. Rasmussen; A. Serov; D. A. Shaughnessy; S. V. Shishkin; A. V. Shutov; M. A. Stoyer; N. J. Stoyer; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin

Abstract Recently, the chemical investigation of element 112 revealed a highly volatile, noble metallic behaviour, as expected for the last group 12 member of the periodic table. The observed volatility and chemical inertness were ascribed to the growing influence of relativistic effects on the chemical properties of the heaviest elements with increasing nuclear charge. Here, we report for the first time on gas phase chemical experiments aiming at a determination of element 114 properties. This element was investigated using its isotopes 287114 and 288114 produced in the nuclear fusion reactions of 48Ca with 242Pu and 244Pu, respectively. Identification of three atoms of element 114 in thermochromatography experiments and their deposition pattern on a gold surface indicates that this element is at least as volatile as simultaneously investigated elements Hg, At, and element 112. This behaviour is rather unexpected for a typical metal of group 14.


Radiochimica Acta | 2005

Chemical procedure applied for the identification of Rf/Db produced in the 48Ca +243Am reaction

D. Schumann; H. Bruchertseifer; R. Eichler; B. Eichler; H. W. Gäggeler; S. N. Dmitriev; Yu. Ts. Oganessian; V. P. Utyonkov; S. V. Shishkin; A. V. Yeremin; Yu. V. Lobanov; Yu. S. Tsyganov; V. I. Chepygin; E. A. Sokol; G. K. Vostokin; N. V. Aksenov; M. Hussonnois; M. G. Itkis

Summary A chemical separation procedure for Rf/Db is described which was applied to a long-lived decay product from the nuclear fusion reaction 48Ca+ 243Am. A 1.2 mg thick 243Am target was bombarded by 247 MeV 48Ca particles. The recoiling products were collected in a thick Cu catcher for about one day and then subjected to a chemical separation procedure that included an ion exchange from dilute HF solutions. Final samples were prepared on 30 μg/cm2 thick polyethylene (PE) foils and counted in 4π-geometry for α-particles and spontaneous fission (SF) coincidences. The detector arrays were surrounded by 3He detectors to also assay prompt neutrons. Decontamination factors from actinides of about 105 were achieved. Group 6 (W) to 14 (Pb) elements as models for their heavier homologues were shown to be separated from the Rf/Db fraction with more than 90%. In eight final samples, representing a total beam dose of 3.4 × 1018 particles, 15 SF events were detected. The decay pattern points to a single component with a half-life of ≈32h, which shows a chemical behavior similar to the lighter homologues of group 4 and 5 elements.


Applied Radiation and Isotopes | 2011

Production of 117mSn with high specific activity by cyclotron

O. D. Maslov; G. Ya. Starodub; G. K. Vostokin; M.V. Gustova; S. N. Dmitriev; V.N. Shvetsov; Zoltan Szucs; D. Jansen; Jan Rijn Zeevaart

A method to produce (117m)Sn radionuclide using accelerator production route is described. A new method is proposed to separate the (117m)Sn. Specific activities and thick target yield for (116)Cd(α,3n)(117m)Sn reaction at E(α)=35MeV bombarding energy were determined. The estimated production yield of (117m)Sn was 37.5kBq/μAh for 13.16 mg/cm(2) natural cadmium-oxide target and 410 kBq/μAh for 11.07 mg/cm(2) highly enriched (95%) (116)CdO target. The method developed for separation of (117m)Sn from Cd using anion-exchange resin (Dowex -1×8, fluorine form, 400 mesh) can achieve 98% radiochemical yield of (117m)Sn with more than 99% radionuclidic purity. The estimated specific activity is 2.4 GBq/mg that can be reached with the used irradiation conditions.


Radiochemistry | 2008

Ion-exchange separation of Zr and Hf microamounts in dilute HCl/HF solutions: A model system for chemical identification of Rf and study of its properties

N. V. Aksenov; H. Bruchertseifer; G. A. Bozhikov; E. E. Tereshatov; G. K. Vostokin; G. Ya. Starodub; S. V. Shishkin; H. W. Gäggeler; S. N. Dmitriev

A procedure was developed for selective separation of Group IV elements from Sr and Lu, followed by rapid separation of Zr and Hf by cation-exchange chromatography in dilute HCl/HF solutions. The possibility of using this procedure for chemical identification and determination of decay parameters of the new isotope 267Rf was demonstrated.


Journal of Physics: Conference Series | 2015

Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

Yu. Ts. Oganessian; F. Sh. Abdullin; Charles W Alexander; J. Binder; R. A. Boll; S. N. Dmitriev; J. G. Ezold; K. Felker; J. M. Gostic; R. K. Grzywacz; J. H. Hamilton; R. A. Henderson; M. G. Itkis; K. Miernik; D. Miller; K. J. Moody; A. N. Polyakov; A. V. Ramayya; J. B. Roberto; M. A. Ryabinin; K. Rykaczewski; R. N. Sagaidak; D. A. Shaughnessy; I. V. Shirokovsky; M. V. Shumeiko; M. A. Stoyer; N. J. Stoyer; V. G. Subbotin; A. M. Sukhov; Yu. S. Tsyganov

The reaction of 249Bk with 48Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48Ca ions of about 9x1019 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293117 and 294117 – the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243Am(48Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf – a result of the in-growth of 249Cf in the 249Bk target. The observed decay chain of 294118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249Cf(48Ca,3n)294118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184.


Journal of Physics: Conference Series | 2013

New data from the 243Am + 48Ca reaction give cross-bombardment verification of elements 113, 115 and 117

J. H. Hamilton; Yu. Ts. Oganessian; F. Sh. Abdullin; S. N. Dmitriev; J. M. Gostic; R. A. Henderson; M. G. Itkis; K. J. Moody; A. N. Polyakov; A. V. Ramayya; J. B. Roberto; K. Rykaczewski; R. N. Sagaidak; D. A. Shaughnessy; I V Shirkovsky; M. A. Stoyer; N. J. Stoyer; V. G. Subbotin; A. M. Sukhov; Yu. S. Tsyganov; V. K. Utyonkov; A. A. Voinov; G. K. Vostokin

The reaction 243Am + 48Ca has been reinvestigated to provide new evidence for the discovery of elements 113, 115. Twenty eight new 288115 decay chains were detected in this reaction to increase from three to 31 the number of 288115 atoms observed. In addition, four new decay chains were observed for the first time and assigned to the decay of 289115. These new 289115 events have the same properties for their decay chains as those observed for 289115 populated in the alpha decay of 293117 produced in the 249Bk + 48Ca reaction to provide cross-bombardment evidence. These new high statistics data sets and the cross-bombardment agreement provide definitive evidence for the discoveries of the new elements with Z = 113, 115, 117.


Journal of Physics: Conference Series | 2011

Synthesis of the New Element with Z=117

J. H. Hamilton; Yu. Ts. Oganessian; F. Sh. Abdullin; P. D. Bailey; D. E. Benker; M. E. Bennett; S. N. Dmitriev; J. G. Ezold; R. A. Henderson; M. G. Itkis; Yu. V. Lobanov; A. N. Mezentsev; K. J. Moody; S. L. Nelson; A. N. Polyakov; C. E. Porter; A. V. Ramayya; F. D. Riley; J. B. Roberto; M. A. Ryabinin; K. Rykaczewski; R. N. Sagaidak; D. A. Shaughnessy; I. V. Shirokovsky; M. A. Stoyer; V. G. Subbotin; Ralf Sudowe; A. M. Sukhov; Tu S Tsyganov; V. K. Utyonkov

The synthesis of the new chemical element with atomic number Z=117 is presented. The isotopes 293117 and 294117were produced in fusion reactions between 48Ca and 249Bk. The 249Bk was produced in the High Flux Isotope Reactor and chemically separated at Oak Ridge. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas Filled Recoil Separator. The measured decay properties show a strong rise of stability for super-heavy nuclei toward N=184.


Radiochemistry | 2008

Cation-exchange separation of Group V elements: Model experiments on isolation and chemical identification of Db

E. E. Tereshatov; H. Bruchertseifer; G. A. Bozhikov; N. V. Aksenov; G. Ya. Starodub; G. K. Vostokin; A. G. Belov; S. V. Shishkin; S. N. Dmitriev; H. W. Gäggeler; R. Eichler; D. Schumann

A cation-exchange procedure was developed for separating Nb from Ta, Pa from Ta, and Nb, Pa, and Ta from Zr, Hf, and lanthanides in dilute HC1/HF solutions. The stability of the fluoride complexes of Group IV and V elements decreases in the following order: Nb ∼ Pa > Zr > Hf > Ta. This procedure can be used in experiments on synthesis of superheavy nuclei for isolation of Db from the reaction products and for its chemical identification.


Physical Review C | 2006

Synthesis of the isotopes of elements 118 and 116 in the {sup 249}Cf and {sup 245}Cm+{sup 48}Ca fusion reactions

Yu. Ts. Oganessian; V. K. Utyonkov; Yu. V. Lobanov; F. Sh. Abdullin; A. N. Polyakov; R. N. Sagaidak; I. V. Shirokovsky; Yu. S. Tsyganov; A. A. Voinov; G. G. Gulbekian; S. L. Bogomolov; B. N. Gikal; A. N. Mezentsev; S. Iliev; V. G. Subbotin; A. M. Sukhov; K. Subotic; V. I. Zagrebaev; G. K. Vostokin

The decay properties of {sup 290}116 and {sup 291}116, and the dependence of their production cross sections on the excitation energies of the compound nucleus, {sup 293}116, have been measured in the {sup 245}Cm ({sup 48}Ca, xn){sup 293-x}116 reaction. These isotopes of element 116 are the decay daughters of element 118 isotopes, which are produced via the {sup 249}Cf+{sup 48}Ca reaction. We performed the element 118 experiment at two projectile energies, corresponding to {sup 297}118 compound nucleus excitation energies of E*=29.2{+-}2.5 and 34.4{+-}2.3 MeV. During an irradiation with a total beam dose of 4.1x10{sup 19} {sup 48}Ca projectiles, three similar decay chains consisting of two or three consecutive {alpha} decays and terminated by a spontaneous fission (SF) with high total kinetic energy of about 230 MeV were observed. The three decay chains originated from the even-even isotope {sup 294}118 (E{sub {alpha}}=11.65{+-}0.06 MeV, T{sub {alpha}}=0.89{sub -0.31}{sup +1.07} ms) produced in the 3n-evaporation channel of the {sup 249}Cf+{sup 48}Ca reaction with a maximum cross section of 0.5{sub -0.3}{sup +1.6} pb.

Collaboration


Dive into the G. K. Vostokin's collaboration.

Top Co-Authors

Avatar

S. N. Dmitriev

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

Yu. Ts. Oganessian

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

M. G. Itkis

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

R. N. Sagaidak

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

A. M. Sukhov

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

A. N. Polyakov

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

I. V. Shirokovsky

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

V. G. Subbotin

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

V. K. Utyonkov

Joint Institute for Nuclear Research

View shared research outputs
Top Co-Authors

Avatar

Yu. S. Tsyganov

Joint Institute for Nuclear Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge