G.M. Jiang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G.M. Jiang.
Photosynthetica | 2010
Lisha Zhang; Haihua Xu; J.C. Yang; W. D. Li; G.M. Jiang; Yonggeng Li
In order to investigate the effect of chromosome doubling on ozone tolerance, we compared the physiological responses of a diploid honeysuckle (Lonicera japonica Thunb.) and its autotetraploid cultivar to elevated ozone (O3) exposure (70 ng g−1, 7 h d−1 for 31 d). Net photosynthetic rate (PN) of both cultivars were drastically (P<0.01) impaired by O3. Although there were significantly positive correlation between PN and stomatal conductance (gs) in both cultivars under each treatment, the decreased gs in O3 might be the result rather than the cause of decreased PN as indicated by stable or increasing the ratio of intercellular to ambient CO2 concentration(Ci/Ca). PN under saturating CO2 concentration (PNsat) and carboxylation efficiency (CE) significantly decreased under O3 fumigation, which indicated the Calvin cycle was impaired. O3 also inhibited the maximum efficiency of photosystem II (PSII) photochemistry in the dark-adapted state (Fv/Fm), actual quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), the maximum in vivo rate of Rubisco carboxylation (Vcmax) and the maximal photosynthetic electron transport rate (Jmax) which demonstrated that the decrease in PN of the honeysuckle exposed to elevated O3 was probably not only due to impairment of Calvin cycle but also with respect to the light-harvesting and electron transport processes. Compared to the diploid, the tetraploid had higher relative loss in transpiration rate (E), (gs), (PNsat), Vcmax and Jmax. This result indicated that the Calvin cycle and electron transport in tetraploid was damaged more seriously than in diploid. A barely nonsignificant (P=0.086) interaction between O3 and cultivar on PN suggested a higher photosynthetic sensitivity of the tetraploid cultivar.
Photosynthetica | 2007
Yingfeng Li; G.M. Jiang; Meizhen Liu; Shuli Niu; Lian Gao; X.-C. Cao
The responses of gas exchange and chlorophyll fluorescence of field-growing Ulmus pumila seedlings to changes in simulated precipitation were studied in Hunshandak Sandland, China. Leaf water potential (Ψwp), net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) were significantly increased with enhancement of precipitation from 0 to 20 mm (p<0.01), indicating stomatal limitation of U. pumila seedlings that could be avoided when soil water was abundant. However, PN changed slightly when precipitation exceeded 20 mm (p>0.05), indicating more precipitation than 20 mm had no significant effects on photosynthesis. Maximum photochemical efficiency of photosystem 2, PS 2 (Fv/Fm) increased from 0.53 to 0.78 when rainfall increased from 0 to 10 mm, and Fv/Fm maintained a steady state level when rainfall was more than 10 mm. Water use efficiency (WUE) decreased significantly (from 78–95 to 23–27 µmol mol−1) with enhancement of rainfalls. PN showed significant linear correlations with both gs and Ψwp (p<0.0001), which implied that leaf water status influenced gas exchange of U. pumila seedlings. The 20-mm precipitation (soil water content at about 15 %, v/v) might be enough for the growth of elm seedlings. When soil water content (SWC) reached 10 %, down regulation of PS2 photochemical efficiency could be avoided, but stomatal limitation to photosynthesis remained. When SWC exceeded 15 %, stomatal limitation to photosynthesis could be avoided, indicating elm seedlings might tolerate moderate drought.
Photosynthetica | 2004
Shuli Niu; Lijun Li; G.M. Jiang; Lian Gao; Yingfeng Li; Yan-Qiong Peng; Meizhen Liu
The response of gas exchange and chlorophyll fluorescence along with changes in simulated rainfall were studied in water stressed plants Hedysarum fruticosum var. mongolicum (H.f.m.). Net photosynthetic rate (PN), stomatal conductance (gs), leaf water potential (Ψleaf), and apparent carboxylation efficiency (PN/Ci) were significantly increased with the increase of rainfall. However, they did not change synchronously. The complete recovery of both PN and PN/Ci appeared 3 d after watering while gs and Ψleaf were recovered 1 d after treatment. Gas exchange characters increased sharply from 5 to 15 mm rainfall and then maintained steady state with increasing rainfall. During the initial phase of water recovery, photosystem 2 (PS2) activity was not affected and its complete recovery occurred also 3 d after rainfall. Hence the recovery of PN was attributed to both opening of stomata and increase in carboxylation efficiency. Furthermore, PS2 activity was really impaired by water stress and could recover to the normal status when the water stress disappeared.
Photosynthetica | 2003
Meizhen Liu; G.M. Jiang; Shuli Niu; Yin Li; Leiming Gao; L. Ding; Yu Peng
Net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and leaf water potential (Ψl) of an annual pioneer C4 grass (Agriophyllum squarrosum) were compared under different simulated precipitation events in a field of Hunshandak Sandland, China. The increase of soil water content (SWC) had significant effect on these physiological traits (p<0.001). In the vegetative stage, the values of PN, E, and gs went up sharply when SWC increased at the beginning, while they went down with continuous increase of SWC. PN, E, and gs increased 1.4, 1.7, and 1.7 fold, respectively, with SWC range from 6.7 to 11.6 %. In the reproductive stage, similar trends were found, except for the climate with a higher SWC. This indicated that A. squarrosum was very sensitive to the small increment of SWC which might have a large photosynthetic potential. Ψl increased by about 8 % as the SWC changed from 6.7 to 8.8 %, and then maintained a steady level when the SWC was higher than 8.8 %, while the values of PN, E, and gs kept increasing even after this SWC. This might indicate that the adjustment of Ψl response to the changes of SWC lagged that of the photosynthetic parameters.
Photosynthetica | 2002
Zeneng Wang; Yinong Xu; Zhenle Yang; Haitong Hou; G.M. Jiang; Tingyun Kuang
Fluorescence spectroscopy at 77 K showed that the application of glucose lead to the depletion of phycobilisomes (PBS) and photosystems (PS) 2 and 1, and that PS2 was more sensitive to glucose than PS1. The application of sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, counteracted the effects of glucose. Sodium thiosulfate effectively protected photosynthetic apparatus, PS2, PS1, and PBS against glucose-induced depletion. Sodium thiosulfate showed strong capability to inhibit the disappearance of chlorophyll induced by glucose. At a relatively low concentration of glucose, the application of sodium thiosulfate can even be helpful for the assembly of photosynthetic apparatus. Hence the reactive oxygen species might be involved in the depletion of the photosynthetic apparatus in the cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose.
Photosynthetica | 2004
Chunsun Jiang; Hui-Yuan Gao; Qi Zou; G.M. Jiang
Chlorophyll fluorescence kinetics was used to investigate the effect of 1,4-dithiothreitol (DTT) on the distribution of excitation energy between photosystem 1 (PS1) and photosystem 2 (PS2) in soybean leaves under high irradiance (HI). The maximum PS2 quantum yield (Fv/Fm) was hardly affected by the presence of DTT, however, photon-saturated photosynthesis was depressed distinctly. Photochemical efficiency of open PS2 reaction centres during irradiation (Fv′/Fm′) was enhanced by about 30–40 % by DTT treatment, whereas photochemical quenching (qP) was depressed by about 40 % under HI. DTT treatment caused a 30 % decrease in allocation of excitation energy to PS1 under HI and a 20 % increase to PS2. An obvious shift in the balance of excitation energy distribution between photosystems was observed in DTT-treated leaves. Though high excitation pressure (1 - qP) resulted from DTT treatment, non-photochemical quenching (qN) was lower. DTT completely inhibited the formation of zeaxanthin and also distinctly depressed the state transition (qT). The shift in the balance of excitation distribution between the two photosystems induced by DTT was mainly due to the enhancement of excitation energy capture by PS2 antenna and the inhibition of state transition. It might be the shift in the balance between the two photosystems that mainly induced the depression of photosynthesis. Thus, to keep high utilization efficiency of absorbed photon energy, it is necessary to maintain the balance of excitation distribution between PS2 and PS1.
Photosynthetica | 2002
H.Q. Liu; G.M. Jiang; Qide Zhang; J.Z. Sun; R.J. Guo; Lian Gao; K. Z. Bai; T. Y. Kuang
Three winter wheat (Triticum aestivum L.) cultivars, representatives of those widely cultivated in Beijing over the past six decades, were grown in the same environmental conditions. Net photosynthetic rate (PN) per unit leaf area and instantaneous water use efficiency (WUE) of flag leaves increased with elevated CO2 concentration. With an increase in CO2 concentration from 360 to 720 µmol mol−1, PN and WUE of Jingdong 8 (released in 1990s and having the highest yield) increased by 173 and 81 %, while those of Nongda 139 (released in 1970s) increased by 88 and 66 %, and Yanda 1817 (released in 1945, with lowest yield) by 76 and 65 %. Jingdong 8 had the highest PN and WUE values under high CO2 concentration, but Yanda 1817 showed the lowest PN. Stomatal conductance (gs) of Nongda 139 and Yanda 1817 declined with increasing CO2 concentration, but gs of Jingdong 8 firstly went down and then up as the CO2 concentration further increased. Intercellular CO2 concentration (Ci) of Jingdong 8 and Nongda 139 increased when CO2 concentration elevated, while that of Yanda 139 increased at the first stage and then declined. Jingdong 8 had the lowest Ci of the three wheat cultivars, and Yanda 1817 had the highest Ci value under lower CO2 concentrations. However, Jingdong 8 had the highest PN and lowest Ci at the highest CO2 concentration which indicates that its photosynthetic potential may be high.
Journal of Plant Research | 2003
G.M. Jiang; J. Z. Sun; Heyong Liu; C. M. Qu; Ke Wang; R. J. Guo; K. Z. Bai; Lian Gao; T. Y. Kuang
Process Biochemistry | 2005
Fuying Feng; Wen Yang; G.M. Jiang; Yinong Xu; Ting-Yun Kuang
Physiologia Plantarum | 2003
Yinong Xu; Zeneng Wang; G.M. Jiang; Liangbi Li; Tingyun Kuang