G. M. Monawar Hosain
New Hampshire Department of Health & Human Services
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. M. Monawar Hosain.
Journal of the National Cancer Institute | 2016
Dalsu Baris; Richard Waddell; Laura E. Beane Freeman; Molly Schwenn; Joanne S. Colt; Joseph D. Ayotte; Mary H. Ward; John Nuckols; Alan R. Schned; Brian P. Jackson; Castine Clerkin; Nathaniel Rothman; Lee E. Moore; Anne Taylor; Gilpin Robinson; G. M. Monawar Hosain; Karla R. Armenti; Richard McCoy; Claudine Samanic; Robert N. Hoover; Joseph F. Fraumeni; Alison Johnson; Margaret R. Karagas; Debra T. Silverman
BACKGROUND Bladder cancer mortality rates have been elevated in northern New England for at least five decades. Incidence rates in Maine, New Hampshire, and Vermont are about 20% higher than the United States overall. We explored reasons for this excess, focusing on arsenic in drinking water from private wells, which are particularly prevalent in the region. METHODS In a population-based case-control study in these three states, 1213 bladder cancer case patients and 1418 control subjects provided information on suspected risk factors. Log transformed arsenic concentrations were estimated by linear regression based on measurements in water samples from current and past homes. All statistical tests were two-sided. RESULTS Bladder cancer risk increased with increasing water intake (Ptrend = .003). This trend was statistically significant among participants with a history of private well use (Ptrend = .01). Among private well users, this trend was apparent if well water was derived exclusively from shallow dug wells (which are vulnerable to contamination from manmade sources, Ptrend = .002) but not if well water was supplied only by deeper drilled wells (Ptrend = .48). If dug wells were used pre-1960, when arsenical pesticides were widely used in the region, heavier water consumers (>2.2 L/day) had double the risk of light users (<1.1 L/day, Ptrend = .01). Among all participants, cumulative arsenic exposure from all water sources, lagged 40 years, yielded a positive risk gradient (Ptrend = .004); among the highest-exposed participants (97.5th percentile), risk was twice that of the lowest-exposure quartile (odds ratio = 2.24, 95% confidence interval = 1.29 to 3.89). CONCLUSIONS Our findings support an association between low-to-moderate levels of arsenic in drinking water and bladder cancer risk in New England. In addition, historical consumption of water from private wells, particularly dug wells in an era when arsenical pesticides were widely used, was associated with increased bladder cancer risk and may have contributed to the New England excess.
Carcinogenesis | 2014
Jonine D. Figueroa; Summer S. Han; Montserrat Garcia-Closas; Dalsu Baris; Eric J. Jacobs; Manolis Kogevinas; Molly Schwenn; Núria Malats; Alison Johnson; Mark P. Purdue; Neil E. Caporaso; Maria Teresa Landi; Ludmila Prokunina-Olsson; Zhaoming Wang; Amy Hutchinson; Laurie Burdette; William Wheeler; Paolo Vineis; Afshan Siddiq; Victoria K. Cortessis; Charles Kooperberg; Olivier Cussenot; Simone Benhamou; Jennifer Prescott; Stefano Porru; H. Bas Bueno-de-Mesquita; Dimitrios Trichopoulos; Börje Ljungberg; Françoise Clavel-Chapelon; Elisabete Weiderpass
Bladder cancer is a complex disease with known environmental and genetic risk factors. We performed a genome-wide interaction study (GWAS) of smoking and bladder cancer risk based on primary scan data from 3002 cases and 4411 controls from the National Cancer Institute Bladder Cancer GWAS. Alternative methods were used to evaluate both additive and multiplicative interactions between individual single nucleotide polymorphisms (SNPs) and smoking exposure. SNPs with interaction P values < 5 × 10(-) (5) were evaluated further in an independent dataset of 2422 bladder cancer cases and 5751 controls. We identified 10 SNPs that showed association in a consistent manner with the initial dataset and in the combined dataset, providing evidence of interaction with tobacco use. Further, two of these novel SNPs showed strong evidence of association with bladder cancer in tobacco use subgroups that approached genome-wide significance. Specifically, rs1711973 (FOXF2) on 6p25.3 was a susceptibility SNP for never smokers [combined odds ratio (OR) = 1.34, 95% confidence interval (CI) = 1.20-1.50, P value = 5.18 × 10(-) (7)]; and rs12216499 (RSPH3-TAGAP-EZR) on 6q25.3 was a susceptibility SNP for ever smokers (combined OR = 0.75, 95% CI = 0.67-0.84, P value = 6.35 × 10(-) (7)). In our analysis of smoking and bladder cancer, the tests for multiplicative interaction seemed to more commonly identify susceptibility loci with associations in never smokers, whereas the additive interaction analysis identified more loci with associations among smokers-including the known smoking and NAT2 acetylation interaction. Our findings provide additional evidence of gene-environment interactions for tobacco and bladder cancer.
Cancer Research | 2014
Yi Ping Fu; Indu Kohaar; Lee E. Moore; Petra Lenz; Jonine D. Figueroa; Wei Tang; Patricia Porter-Gill; Nilanjan Chatterjee; Alexandra Scott-Johnson; Montserrat Garcia-Closas; Brian Muchmore; Dalsu Baris; Ashley Paquin; Kris Ylaya; Molly Schwenn; Andrea B. Apolo; Margaret R. Karagas; McAnthony Tarway; Alison Johnson; Adam Mumy; Alan R. Schned; Liliana Guedez; Michael A. Jones; Masatoshi Kida; G. M. Monawar Hosain; Núria Malats; Manolis Kogevinas; Adonina Tardón; Consol Serra; Alfredo Carrato
A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) ≥ 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 × 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P(trend) = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
American Journal of Epidemiology | 2015
Laura E. Beane Freeman; Margaret R. Karagas; Dalsu Baris; Molly Schwenn; Alison Johnson; Joanne S. Colt; Brian P. Jackson; G. M. Monawar Hosain; Kenneth P. Cantor; Debra T. Silverman
Selenium has been linked to a reduced risk of bladder cancer in some studies. Smoking, a well-established risk factor for bladder cancer, has been associated with lower selenium levels in the body. We investigated the selenium-bladder cancer association in subjects from Maine, New Hampshire, and Vermont in the New England Bladder Cancer Case-Control Study. At interview (2001-2005), participants provided information on a variety of factors, including a comprehensive smoking history, and submitted toenail samples, from which we measured selenium levels. We estimated odds ratios and 95% confidence intervals among 1,058 cases and 1,271 controls using logistic regression. After controlling for smoking, we saw no evidence of an association between selenium levels and bladder cancer (for fourth quartile vs. first quartile, odds ratio (OR) = 0.98, 95% confidence interval (CI): 0.77, 1.25). When results were restricted to regular smokers, there appeared to be an inverse association (OR = 0.76, 95% CI: 0.58, 0.99); however, when pack-years of smoking were considered, this association was attenuated (OR = 0.91, 95% CI: 0.68, 1.20), indicating potential confounding by smoking. Despite some reports of an inverse association between selenium and bladder cancer overall, our results, combined with an in-depth evaluation of other studies, suggested that confounding from smoking intensity or duration could explain this association. Our study highlights the need to carefully evaluate the confounding association of smoking in the selenium-bladder cancer association.
International Journal of Cancer | 2018
Stella Koutros; Dalsu Baris; Richard Waddell; Laura E. Beane Freeman; Joanne S. Colt; Molly Schwenn; Alison Johnson; Mary H. Ward; G. M. Monawar Hosain; Lee E. Moore; Rachael Z. Stolzenberg-Solomon; Nathaniel Rothman; Margaret R. Karagas; Debra T. Silverman
Populations exposed to arsenic in drinking water have an increased bladder cancer risk and evidence suggests that several factors may modify arsenic metabolism, influencing disease risk. We evaluated whether the association between cumulative lifetime arsenic exposure from drinking water and bladder cancer risk was modified by factors that may impact arsenic metabolism in a population‐based case–control study of 1,213 cases and 1,418 controls. Unconditional logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between cumulative arsenic intake and bladder cancer stratified by age, sex, smoking status, body mass index (BMI), alcohol consumption and folate intake. P‐values for interaction were computed using a likelihood ratio test. We observed no statistically significant multiplicative interactions although some variations in associations were notable across risk factors, particularly for smoking and BMI. Among former smokers and current smokers, those with the highest cumulative arsenic intake had elevated risks of bladder cancer (OR = 1.4, 95% CI: 0.96–2.0 and OR = 1.6, 95% CI: 0.91–3.0, respectively; while the OR among never smokers was 1.1, 95% CI: 0.6–1.9, p‐interaction = 0.49). Among those classified as normal or overweight based on usual adult BMI, the highest level of cumulative arsenic intake was associated with elevated risks of bladder cancer (OR = 1.3, 95% CI: 0.89–2.0 and OR = 1.6, 95% CI: 1.1–2.4, respectively), while risk was not elevated among those who were obese (OR = 0.9, 95% CI: 0.4–1.8) (p‐interaction = 0.14). Our study provides some limited evidence of modifying roles of age, sex, smoking, BMI, folate and alcohol on arsenic‐related bladder cancer risk that requires confirmation in other, larger studies.
WOS | 2014
Yi-Ping Fu; Indu Kohaar; Lee E. Moore; Petra Lenz; Jonine D. Figueroa; Wei Tang; Patricia Porter-Gill; Nilanjan Chatterjee; Alexandra Scott-Johnson; Montserrat Garcia-Closas; Brian Muchmore; Dalsu Baris; Ashley Paquin; Kris Ylaya; Molly Schwenn; Andrea B. Apolo; Margaret R. Karagas; McAnthony Tarway; Alison Johnson; Adam Mumy; Alan R. Schned; Liliana Guedez; Michael A. Jones; Masatoshi Kida; G. M. Monawar Hosain; Núria Malats; Manolis Kogevinas; Adonina Tardón; Consol Serra; Alfredo Carrato
A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) ≥ 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 × 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P(trend) = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
Cancer Research | 2014
Yi-Ping Fu; Indu Kohaar; Lee E. Moore; Petra Lenz; Jonine D. Figueroa; Wei Tang; Patricia Porter-Gill; Nilanjan Chatterjee; Alexandra Scott-Johnson; Montserrat Garcia-Closas; Brian Muchmore; Dalsu Baris; Ashley Paquin; Kris Ylaya; Molly Schwenn; Andrea B. Apolo; Margaret R. Karagas; McAnthony Tarway; Alison Johnson; Adam Mumy; Alan R. Schned; Liliana Guedez; Michael A. Jones; Masatoshi Kida; G. M. Monawar Hosain; Núria Malats; Manolis Kogevinas; Adonina Tardón; Consol Serra; Alfredo Carrato
A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) ≥ 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 × 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P(trend) = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
Environmental Health Perspectives | 2017
Laura E. Beane Freeman; Kenneth P. Cantor; Dalsu Baris; John R. Nuckols; Alison Johnson; Joanne S. Colt; Molly Schwenn; Mary H. Ward; Jay H. Lubin; Richard Waddell; G. M. Monawar Hosain; Chris Paulu; Richard McCoy; Lee E. Moore; An-Tsun Huang; Nat Rothman; Margaret R. Karagas; Debra T. Silverman