G. Müller
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Müller.
Chemical Physics Letters | 1971
H. G. Bennewitz; R. Haerten; G. Müller
Abstract The molecular beam electric resonance method has been used to measure the vibrational energy distribution of CsF produced in the chemical reactions Cs + SF 6 and SF 4 . The reaction Cs + SF 6 yields a perfect Boltzmann distribution for the products CsF. For the reaction Cs + SF 4 a more complicated distribution has been found which, according to the molecular structure of SF 4 , can be explained as a superposition of two Boltzmann distributions of different vibrational temperatures.
European Physical Journal A | 1969
H. G. Bennewitz; R. Gengenbach; R. Haerten; G. Müller
Improved measurements of the ratio of scattering cross sections for various molecular rotational states are reported for scattering of TlF in rotational states ¦J, M〉=¦1, 0〉 and ¦1, 1〉, and CsF in rotational states ¦2, 0〉 and ¦2, 2〉 by rare gases. The results are interpreted in terms of an angle dependent attractive potentialV=−2ε(rm/r)6(1+q6P2(cosΘ) in which the repulsive part of the interaction is neglected. The “high energy” approximation is used to calculate the cross section, which contains the velocity dependence and the state dependence as factors. The experiments show for all scattering partners with the exception of He and Ne, that the state dependence is velocity independent. In those cases this result provides a justification for the neglect of the repulsive potential term. The results for the anisotropy parameterq6, which to a good approximation depends only on properties of the moleculus, are:q6=0.23±0.01 for TlF,q6=0.28±0.02 for CsF.
European Physical Journal A | 1971
H. G. Bennewitz; R. Haerten; Odo Klais; G. Müller
AbstractRadio frequency spectra of CsF in the rotational stateJ=1 have been measured for the vibrational statesv=0, 1,..., 8 using the molecular beam electric resonance method. The analysis of the spectra yields the electric dipole moment μv and the quadrupole coupling constanteqvQ connected with the quadrupole moment of the Cs nucleus. The results are:
Chemical Physics Letters | 1971
H. G. Bennewitz; R. Haerten; Odo Klais; G. Müller
Chemical Physics Letters | 1969
H. G. Bennewitz; R. Gengenbach; R. Haerten; G. Müller
\begin{gathered} \mu _\upsilon = 7.8478 + 0.07026(\upsilon + 1/2) + 0.000195(\upsilon + 1/2)^2 debye \hfill \\ eq_\upsilon Q/h = 1245.2 - 16.2(\upsilon + 1/2) + 0.31(\upsilon + 1/2)^2 kHz. \hfill \\ \end{gathered}
Archive | 1973
H. G. Bennewitz; R. Haerten; Odo Klais; G. Müller
Archive | 1973
H. G. Bennewitz; R. Haerten; Odo Klais; G. Müller
Archive | 1973
H. G. Bennewitz; R. Haerten; Odo Klais; G. Müller
Abstract The molecular-beam electric-resonance method has been used to measure the radio frequency spectra of CsF in the rotational state J = 1 and vibrational states ι′ = 0. 1. … 8. The analysis of the spectra yields the electric dipole moment and the quadrupole coupling constant as functions of ι′.
European Physical Journal A | 1969
H. G. Bennewitz; R. Haerten; G. Müller
Abstract The anisotropy parameters of the attractive and repulsive interaction between diatomic molecules and atoms are determined from molecular beam scattering experiments. The results are reported for collisions of CsF and TIF with rare gases.
Archive | 1973
H. G. Bennewitz; R. Haerten; Odo Klais; G. Müller
Von entscheidender Bedeutung bei der Beurteilung des Resonanzsignals ist die Grose \( {S_v} = \Delta {v_{\operatorname{Re} s}}/\sqrt {Signal} \), wo ΔvRes die auf eine bestimmte Mesdauer bezogene Intensitat („Tiefe“) der Resonanzlinie fur den Schwingungszustand v ist. Unter “Signal” ist die fokussierte, auf dieselbe Mesdauer bezogene Gesamtintensitat zu verstehen, die den Basislinien in Abb. 4 und 5 entspricht. Optimalisieren des Resonanzsignals heist, Sv moglichst gros zu machen. Sv hangt von mehreren Einflussen ab, die im folgenden getrennt untersucht werden: 1. von der Einlasrate des Sekundargases, 2. vom Laborwinkel ΘLAB unter dem das Spektrometer die reaktive Quelle sieht, 3. von der Fokussierungsspannung U an A- und B-Feld, 4. von der Amplitude der eingestrahlten HF.