G. N. Akoev
Russian Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. N. Akoev.
Neurophysiology | 1987
G. N. Akoev; Yu. N. Andrianov; N. O. Sherman
The effects of L-aspartic acid (L-ASP) on spontaneous and evoked activity in afferent nerve fibers were investigated by perfusing the basal membrane of sea skate electroreceptors (the ampullae of Lorenzini) with this substance. It was found that perfusion with physiological saline containing L-ASP exerted a primarily excitatory effect on afferent activity (threshold concentration: 10−7 M). When synaptic transmission was blocked by magnesium ions, activity was restored in the afferent fibers if L-ASP was added to the solution and spike activity persisted for longer; this would imply the presence of desensitizing processes in the postsynaptic receptors of the ampullae. Finding would lead to the conclusion that L-ASP and L-glutamate fulfill a set of criteria for likely neurotransmitters in the ampullae of Lorenzini.
Neurophysiology | 1993
Yu. N. Andrianov; G. N. Akoev; H. A. Braun; I. V. Ryzhova; K. Fogt; N. O. Sherman
Effects of dalargin, a synthetic leu-enkephalin analogue and its antagonist naloxone on synaptic transmission in afferent synapses of ray electroreceptors were investigated using an isolated preparation of Lorenzini ampullae from Black sea rays. It was shown that dalargin (10−6–10−10 mole liter) both decreased background activity and evoked activity of an afferent fiber in a dose-dependent manner. Naloxone (10−5 mole/liter) also inhibited afferent impulsation and completely blocked responses of the Lorenzini ampullae to dalargin application. L-glutamate-induced excitatory responses were reduced in the presence of dalargin. It is suggested that the modulatory action of dalargin on glutamatergic synaptic transmission in the Lorenzini ampullae is exerted via specific opiate receptors.
Neurophysiology | 1992
G. N. Akoev; Yu. N. Andrianov; I. V. Ryzhova; N. O. Sherman
The method of superfusion of the basal membranes of the ampullae of Lorenzini of skates was used to investigate the influence of L-serine-O-phosphate (SOP) on the background and evoked activity of afferent nerve fibers, as well as on the effects of application of agonists: exciting amino acids — L-glutamate (L-GLU), kainate (KA), quisqualte (Q), and N-methyl-D-aspartate (NMDA). It was found that SOP (threshold concentration 10−7 M) had an inhibiting effect on the background and evoked activity of the nerve fibers; depending on the concentration it decreased the stimulatory effects of L-GLU and NMDA and did not change the responses due to application of KA and Q. The data obtained suggest that the effects of SOP observed in the ampullae of Lorenzini are associated with its interaction with NMDA-type amino acid receptors.
Neurophysiology | 1989
G. N. Akoev; Yu. N. Andrianov; B. Bromm; T. Szabo; N. O. Sherman
The effects of quisqualic acid (QA), N-methyl-D-aspartate (NMDA), and a number of NMDA and non-NMDA receptor antagonists on background and induced activity in afferent nerve fibers were investigated in skates by means of bath application to the basal membrane of electroreceptors (ampullae of Lorenzini). Perfusion with physiological saline containing QA or NMDA (minimum concentrations required: 10−8 and 10−5 M respectively) was found to exert an excitatory effect on afferent activity. Aminoadipate and aminophosphonobutyrate had no effect on synaptic transmission, which was blocked by aminophosphonovalerate, however. Raising magnesium ion concentration (of 30 mM) led to blockade of NMDA-induced response without changing that produced by QA. Aminophosphonovalerate blocked NMDA response and partially reduced the effects of L-aspartic acid. Glutamyl glycine produced blockade of synaptic transmission. The findings obtained would point to synaptic sensitivity to the action of amino acid agonists (QA and NMDA) in the ampullae of Lorenzini.
Neurophysiology | 1988
G. N. Akoev; Yu. N. Andrianov; N. O. Sherman
The effects on synaptic transmission of glutamic acid diethylester (GDEE), a glutamate receptor blocker, were investigated by recording spike activity from single nerve fibers in the electroreceptor cells of the skate (Raja clavata) ampullae of Lorenzini. It was found that adding GDEE to the bathing medium led to a concentration-dependent reduction in or complete blockade of background and evoked receptor activity; 10−6 M GDEE was the minimum effective concentration. It was also shown that GDEE reversibly blocked postsynaptic response produced by excitatory amino acids: L-glutamate (L-GLU) and L-asparate (L-ASP). Findings suggest the involvement of L-GLU or a related substance in synaptic transmission in the ampullae of Lorenzini.
Neurophysiology | 1988
G. N. Akoev; Yu. N. Andrianov; N. O. Sherman
The effects on synaptic transmission of blockers of amino acids at postsynaptic receptors were investigated by means of external perfusion of the basal membrane of electroreceptor cells in ampullae of Lorenzini and by recording of spike activity from individual nerve fibers in the skateRajaclavata: glutamic acid diethyl ester (DEE-GLU), glutamic acid dimethyl ester (DME-GLU), D-α-aminoadipic acid (DAA), kynurenic acid (KYN), and cis-2,3-piperidine dicarboxylic acid (PDA). The most effective blocker was found to be DEE-GLU, producing reversible blockade of postsynaptic amino acid response. It was found that DAA did not change synaptic transmission in the electroreceptors, while PDA largely affected response produced by applying L-aspartic acid (L-ASP); KYN affected response produced by L-glutamic acid (L-GLU). It is deduced that L-GLU and L-ASP are the most effective agonists at the afferent synapse of ampullae of Lorenzini and that their excitatory effect is produced by activating quisqualate receptors.
Neurophysiology | 1986
G. N. Akoev; Yu. N. Andrianov; N. O. Sherman
The effects of kainic acid on synaptic transmission in electroreceptors were investigated in the skate using techniques of uninterrupted superfusion of the synaptic area with a solution containing this substance and then recording the spike activity of single nerve fibers of the ampullae of Lorenzini. Kainic acid at threshold concentrations of the order of 10−9 M effectively changed spontaneous and evoked activity of the receptors. Level of background activity served as an indication of the effects taking place. During blockage of synaptic transmission produced by magnesium ions the addition of kainic acid to the magnesium-saturated solution restored both spontaneous and evoked activity. It was deduced that the action of kainic acid on skate electroreceptors is of a primarily presynaptic nature.
Neurophysiology | 1985
G. N. Akoev; Yu. N. Andrianov; N. O. Sherman
The effect of a change in potassium ion concentration in the region of the basal membranes of the ampullae of Lorenzini of the thornback ray on spontaneous and evoked discharges of the receptors was investigated. A decrease in potassium ion concentration in the solution of perfusion with potassium-free solution led to a decrease in firing rate. Conversely, an increase in the potassium ion concentration caused an increase in discharge frequency followed by a decrease; thresholds of the receptors to the action of electrical stimuli were unchanged. When synaptic transmission was blocked by magnesium ions, an increase in the potassium ion concentration did not cause the appearance of activity in nerve fibers. If, however, activity of the nerve fibers in solution with a high magnesium ion concentration was restored with L-glutamic acid (10−4 M), an increase in the potassium ion concentration caused an increase in firing rate. The role of potassium ions in the activity of receptors of the lateral-line system is discussed.
Neurophysiology | 1982
G. N. Akoev; Yu. N. Andrianov; N. O. Vol'pe
The effect of magnesium ions, L-glutamate (L-GLU), and the diethyl ester of glutamic acid (DEE-GLU) on temperature and electrical sensitivity of the ampullae of Lorenzini in skates was studied by the method of perfusion of the basal membrane of electroreceptor cells and recording spike activity from single nerve fibers. Addition of 10−4–10−5 M L-GLU to the solution was shown to cause an increase in the spontaneous discharge frequency of receptors with low initial level of activity (8–20 spikes/sec) and a decrease in receptors with spontaneous activity of 22–42 spikes/sec. In solution with an increased magnesium ion concentration (15–50 mM) both spontaneous and evoked receptor activity was blocked, Under these conditions the addition of L-GLU to the solution caused partial recovery of spontaneous receptor activity. Reversible blocking of spontaneous and evoked receptor activity was observed in a solution containing 10−4–10−3 M DEE-GLU. It is suggested that L-GLU is the synaptic transmitter in the ampullae of Lorenzini of the skate.
Neurophysiology | 1991
G. N. Akoev; Yu. N. Andrianov; I. V. Ryzhova; N. O. Sherman