Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Nalesso is active.

Publication


Featured researches published by G. Nalesso.


Journal of Cell Biology | 2011

WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways

G. Nalesso; J. Sherwood; Jessica Bertrand; Thomas Pap; Cosimo De Bari; Costantino Pitzalis; Francesco Dell'Accio

A single Wnt can simultaneously activate different pathways with distinct and independent outcomes and reciprocal regulation in human articular chondrocytes.


Annals of the Rheumatic Diseases | 2015

A homeostatic function of CXCR2 signalling in articular cartilage

J. Sherwood; Jessica Bertrand; G. Nalesso; B. Poulet; Andrew A. Pitsillides; Laura Brandolini; Alexandra Karystinou; Cosimo De Bari; Frank P. Luyten; Costantino Pitzalis; Thomas Pap; Francesco Dell'Accio

Objective ELR+ CXC chemokines are heparin-binding cytokines signalling through the CXCR1 and CXCR2 receptors. ELR+ CXC chemokines have been associated with inflammatory arthritis due to their capacity to attract inflammatory cells. Here, we describe an unsuspected physiological function of these molecules in articular cartilage homeostasis. Methods Chemokine receptors and ligands were detected by immunohistochemistry, western blotting and RT-PCR. Osteoarthritis was induced in wild-type and CXCR2−/− mice by destabilisation of the medial meniscus (DMM). CXCR1/2 signalling was inhibited in vitro using blocking antibodies or siRNA. Chondrocyte phenotype was analysed using Alcian blue staining, RT-PCR and western blotting. AKT phosphorylation and SOX9 expression were upregulated using constitutively active AKT or SOX9 plasmids. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay. Results CXCL6 was expressed in healthy cartilage and was retained through binding to heparan sulfate proteoglycans. CXCR2−/− mice developed more severe osteoarthritis than wild types following DMM, with increased chondrocyte apoptosis. Disruption of CXCR1/2 in human and CXCR2 signalling in mouse chondrocytes led to a decrease in extracellular matrix production, reduced expression of chondrocyte differentiation markers and increased chondrocyte apoptosis. CXCR2-dependent chondrocyte homeostasis was mediated by AKT signalling since forced expression of constitutively active AKT rescued the expression of phenotypic markers and the apoptosis induced by CXCR2 blockade. Conclusions Our study demonstrates an important physiological role for CXCR1/2 signalling in maintaining cartilage homeostasis and suggests that the loss of ELR+ CXC chemokines during cartilage breakdown in osteoarthritis contributes to the characteristic loss of chondrocyte phenotypic stability.


Annals of the Rheumatic Diseases | 2016

WNT16 antagonises excessive canonical WNT activation and protects cartilage in osteoarthritis.

G. Nalesso; Bethan Lynne Thomas; J. Sherwood; Jing Yu; Olga Addimanda; S.E. Eldridge; Anne Sophie Thorup; Leslie Dale; Georg Schett; Jochen Zwerina; N.M. Eltawil; Costantino Pitzalis; Francesco Dell'Accio

Objective Both excessive and insufficient activation of WNT signalling results in cartilage breakdown and osteoarthritis. WNT16 is upregulated in the articular cartilage following injury and in osteoarthritis. Here, we investigate the function of WNT16 in osteoarthritis and the downstream molecular mechanisms. Methods Osteoarthritis was induced by destabilisation of the medial meniscus in wild-type and WNT16-deficient mice. Molecular mechanisms and downstream effects were studied in vitro and in vivo in primary cartilage progenitor cells and primary chondrocytes. The pathway downstream of WNT16 was studied in primary chondrocytes and using the axis duplication assay in Xenopus. Results WNT16-deficient mice developed more severe osteoarthritis with reduced expression of lubricin and increased chondrocyte apoptosis. WNT16 supported the phenotype of cartilage superficial-zone progenitor cells and lubricin expression. Increased osteoarthritis in WNT16-deficient mice was associated with excessive activation of canonical WNT signalling. In vitro, high doses of WNT16 weakly activated canonical WNT signalling, but, in co-stimulation experiments, WNT16 reduced the capacity of WNT3a to activate the canonical WNT pathway. In vivo, WNT16 rescued the WNT8-induced primary axis duplication in Xenopus embryos. Conclusions In osteoarthritis, WNT16 maintains a balanced canonical WNT signalling and prevents detrimental excessive activation, thereby supporting the homeostasis of progenitor cells.


Arthritis & Rheumatism | 2013

Syndecan 4 supports bone fracture repair, but not fetal skeletal development, in mice

Jessica Bertrand; Richard Stange; Heriburg Hidding; Frank Echtermeyer; G. Nalesso; Lars Godmann; Melanie Timmen; Peter Bruckner; Francesco Dell'Accio; Michael J. Raschke; Thomas Pap; Rita Dreier

OBJECTIVE Syndecan 4, a heparan sulfate proteoglycan, has been associated with osteoarthritis. The present study was undertaken to analyze the functional role of syndecan 4 in endochondral ossification of mouse embryos and in adult fracture repair, which, like osteoarthritis, involves an inflammatory component. METHODS Sdc4 promoter activity was analyzed in Sdc4(-/-) lacZ-knockin mice, using β-galactosidase staining. Endochondral ossification in embryos from embryonic day 16.5 was assessed by histologic and immunohistologic staining. Bone fracture repair was analyzed in femora of adult mice on days 7 and 14 postfracture. To evaluate Sdc2 and Sdc4 gene expression with and without tumor necrosis factor α (TNFα) and Wnt-3a stimulation, quantitative real-time polymerase chain reaction was performed. RESULTS In Sdc4(-/-) lacZ-knockin animals, syndecan 4 promoter activity was detectable at all stages of chondrocyte differentiation, and Sdc4 deficiency inhibited chondrocyte proliferation. Aggrecan turnover in the uncalcified cartilage of the epiphysis was decreased transiently in vivo, but this did not lead to a growth phenotype at birth. In contrast, among adult mice, fracture healing was markedly delayed in Sdc4(-/-) animals and was accompanied by increased callus formation. Blocking of inflammation via anti-TNFα treatment during fracture healing reduced these changes in Sdc4(-/-) mice to levels observed in wild-type controls. We analyzed the differences between the mild embryonic and the severe adult phenotype, and found a compensatory up-regulation of syndecan 2 in the developing cartilage of Sdc4(-/-) mice that was absent in adult tissue. Stimulation of chondrocytes with Wnt-3a in vitro led to increased expression of syndecan 2, while stimulation with TNFα resulted in up-regulation of syndecan 4 but decreased expression of syndecan 2. TNFα stimulation reduced syndecan 2 expression and increased syndecan 4 expression even in the presence of Wnt-3a, suggesting that inflammation has a strong effect on the regulation of syndecan expression. CONCLUSION Our results demonstrate that syndecan 4 is functionally involved in endochondral ossification and that its loss impairs fracture healing, due to inhibition of compensatory mechanisms under inflammatory conditions.


Annals of the Rheumatic Diseases | 2012

Decreased levels of nucleotide pyrophosphatase phosphodiesterase 1 are associated with cartilage calcification in osteoarthritis and trigger osteoarthritic changes in mice

Jessica Bertrand; Y Nitschke; M Fuerst; Sven Hermann; Michael Schäfers; J. Sherwood; G. Nalesso; W Ruether; F Rutsch; Francesco Dell'Accio; Thomas Pap

Objective To analyse the function of nucleotide pyrophosphatase phosphodiesterase (NPP1), a member of the pyrophosphate pathway, in osteoarthritis (OA). Methods mRNA expression of NPP1, ANK ankylosing protein and tissue non-specific alkaline phosphatase was assessed by quantitative PCR. NPP1 protein levels were analysed in mouse and human cartilage samples. Bone metabolism was analysed by F18-positron emission tomography-scanning and µCT in ttw/ttw mice. Ttw/ttw mice are mice carrying a loss-of-function mutation in NPP1. Calcification of articular cartilage was assessed using von Kossa staining and OA severity using the Mankin score. Cartilage remodelling was investigated by type X collagen immunohistochemistry. Results Expression of NPP1, but not the other members of this pathway, inversely correlated with cartilage calcification and OA severity in mouse and humans. Proinflammatory cytokines downregulated the expression of NPP1, demonstrating an influence of inflammation on matrix calcification. Ttw/ttw mutant mice, carrying a loss-of-function mutation in NPP1, exhibit increased bone formation process in joints compared with wild types. Ttw/ttw mice also developed spontaneous OA-like changes, evaluated by histological analysis and in vivo imaging. Ectopic calcifications were associated with increased expression of collagen X in the cartilage. Conclusion The authors conclude that OA is characterised by the reactivation of molecular signalling cascades involving proinflammatory cytokines, thereby regulating the pyrophosphate pathway which consequently leads to cartilage ossification, at least in part resembling endochondral ossification.


Biochemical Pharmacology | 2011

High density micromass cultures of a human chondrocyte cell line: A reliable assay system to reveal the modulatory functions of pharmacological agents

Karin V. Greco; Asif J. Iqbal; Lorenza Rattazzi; G. Nalesso; N. Moradi-Bidhendi; Adrian Moore; Mary B. Goldring; F. Dell’Accio; Mauro Perretti

Osteoarthritis is a highly prevalent and disabling disease for which we do not have a cure. The identification of suitable molecular targets is hindered by the lack of standardized, reproducible and convenient screening assays. Following extensive comparisons of a number of chondrocytic cell lines, culture conditions, and readouts, we have optimized an assay utilizing C-28/I2, a chondrocytic cell line cultured in high-density micromasses. Utilizing molecules with known effects on cartilage (e.g. IL-1β, TGFβ1, BMP-2), we have exploited this improved protocol to (i) evoke responses characteristic of primary chondrocytes; (ii) assess the pharmacodynamics of gene over-expression using non-viral expression vectors; (iii) establish the response profiles of known pharmacological treatments; and (iv) investigate their mechanisms of action. These data indicate that we have established a medium-throughput methodology for studying chondrocyte-specific cellular and molecular responses (from gene expression to rapid quantitative measurement of sulfated glycosaminoglycans by Alcian blue staining) that may enable the discovery of novel therapeutics for pharmacological modulation of chondrocyte activation in osteoarthritis.


BioResearch Open Access | 2014

Culture Expansion in Low-Glucose Conditions Preserves Chondrocyte Differentiation and Enhances Their Subsequent Capacity to Form Cartilage Tissue in Three-Dimensional Culture

Hannah K. Heywood; G. Nalesso; David A. Lee; Francesco Dell'Accio

Abstract Culture conditions that preserve a stable chondrocyte phenotype are desirable in cell-based cartilage repair to maximize efficacy and clinical outcome. This study investigates whether low-glucose conditions will preserve the chondrocyte phenotype during culture expansion. Articular chondrocytes were culture-expanded in media supplemented with either low (1 mM) or high (10 mM) glucose. The metabolic phenotype, reactive oxygen species generation, and mRNA expression of markers of differentiation or catabolism were assessed by reverse-transcription quantitative polymerase chain reaction after four population doublings (PDs) and subsequent tissue formation capacity determined using pellet cultures. Continuous monolayer culture was used to determine the population doubling limit. After expansion in monolayer for four PDs, chondrocytes expanded in low-glucose conditions exhibited higher expression of the differentiation markers SOX9 and COL2A1 and reduced expression of the catabolic metalloproteinase matrix metallopeptidase 13. When chondrocytes expanded in low glucose were cultured in micropellets, they consistently generated more cartilaginous extracellular matrix than those expanded in high glucose, as evaluated by wet weight, sulfated glycosaminoglycan content, and hydroxyproline assay for collagen content. The same pattern was observed whether high or low glucose was used during the pellet culture. During expansion, chondrocytes in high-glucose generated 50% more reactive oxygen species than low-glucose conditions, despite a lower dependence on oxidative phosphorylation for energy. Furthermore low-glucose cells exhibited >30% increased population doubling limit. These data suggests that low-glucose expansion conditions better preserve the expression of differentiation markers by chondrocytes and enhance their subsequent capacity to form cartilage in vitro. Therefore, low glucose levels should be considered for the expansion of chondrocytes intended for tissue engineering applications.


Annals of the Rheumatic Diseases | 2016

Agrin mediates chondrocyte homeostasis and requires both LRP4 and α-dystroglycan to enhance cartilage formation in vitro and in vivo

S.E. Eldridge; G. Nalesso; Habib Ismail; Karin Vicente-Greco; Panos Kabouridis; Andreas Niemeier; Joachim Herz; Costantino Pitzalis; Mauro Perretti; Francesco Dell'Accio

Objectives Osteoarthritis (OA) is a leading cause of disability for which there is no cure. The identification of molecules supporting cartilage homeostasis and regeneration is therefore a major pursuit in musculoskeletal medicine. Agrin is a heparan sulfate proteoglycan which, through binding to low-density lipoprotein receptor-related protein 4 (LRP4), is required for neuromuscular synapse formation. In other tissues, it connects the cytoskeleton to the basement membrane through binding to α-dystroglycan. Prompted by an unexpected expression pattern, we investigated the role and receptor usage of agrin in cartilage. Methods Agrin expression pattern was investigated in human osteoarthritic cartilage and following destabilisation of the medial meniscus in mice. Extracellular matrix (ECM) formation and chondrocyte differentiation was studied in gain and loss of function experiments in vitro in three-dimensional cultures and gain of function in vivo, using an ectopic cartilage formation assay in nude mice. Receptor usage was investigated by disrupting LRP4 and α-dystroglycan by siRNA and blocking antibodies respectively. Results Agrin was detected in normal cartilage but was progressively lost in OA. In vitro, agrin knockdown resulted in reduced glycosaminoglycan content, downregulation of the cartilage transcription factor SOX9 and other cartilage-specific ECM molecules. Conversely, exogenous agrin supported cartilage differentiation in vitro and ectopic cartilage formation in vivo. In the context of cartilage differentiation, agrin used an unusual receptor repertoire requiring both LRP4 and α-dystroglycan. Conclusions We have discovered that agrin strongly promotes chondrocyte differentiation and cartilage formation in vivo. Our results identify agrin as a novel potent anabolic growth factor with strong therapeutic potential in cartilage regeneration.


Pharmacology Research & Perspectives | 2013

Antagonism of human CC-chemokine receptor 4 can be achieved through three distinct binding sites on the receptor

Robert J. Slack; Linda J. Russell; Nicholas Paul Barton; Cathryn Weston; G. Nalesso; Sally‐Anne Thompson; Morven Allen; Yu Hua Chen; Ashley Barnes; Simon Teanby Hodgson; David A. Hall

Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low‐molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17‐ and CCL22‐induced responses of human CCR4+ T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration‐ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low‐molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4.


Biochemical Pharmacology | 2014

Analyses on the mechanisms that underlie the chondroprotective properties of calcitonin

Karin V. Greco; G. Nalesso; Magdalena Kaneva; J. Sherwood; Asif J. Iqbal; N. Moradi-Bidhendi; Francesco Dell’Accio; Mauro Perretti

INTRODUCTION Calcitonin (CT) has recently been shown to display chondroprotective effects. Here, we investigate the putative mechanisms by which CT delivers these actions. METHODS Immortalized C-28/I2 cells or primary adult human articular chondrocytes (AHAC) were cultured in high-density micromasses to investigate: (i) CT anabolic effects using qPCR and immuhistochemistry analysis; (ii) CT anti-apoptotic effects using quantitation of Bax/Bcl gene products ratio, TUNEL assay and caspase-3 expression; (iii) CT effects on CREB, COL2A1 and NFAT transcription factors. RESULTS CT (10(-10)-10(-8)nM) induced significant up-regulation of cartilage phenotypic markers (SOX9, COL2A1 and ACAN), with down-regulation of catabolic (MMP1 and MMP13 and ADAMTS5) gene products both in resting and inflammatory conditions. This was mirrored by an augmented production of type II collagen and accumulation of glycosaminoglycan- and proteoglycan-rich extracellular matrix in vitro. Mechanistic analyses revealed only partial involvement of cyclic AMP formation in these effects of CT. Congruently, using reporter assays for specific transcription factors, there was no indication for CREB activation, whereas the COL2A1 promoter was genuinely and directly activated by cell exposure to CT. Phenotypically, these mechanisms supported the ability of CT, whilst inactive on its own, to counteract the pro-apoptotic effects of IL-1β, demonstrated by TUNEL-positive staining of chondrocytes and ratio of BAX/BCL genes products. CONCLUSION These data may provide a novel lead for the development of CT-based chondroprotective strategies that rely on the engagement of mechanisms that lead to augmented chondrocyte anabolism and inhibited chondrocyte apoptosis.

Collaboration


Dive into the G. Nalesso's collaboration.

Top Co-Authors

Avatar

Francesco Dell'Accio

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

J. Sherwood

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Jessica Bertrand

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar

Thomas Pap

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Costantino Pitzalis

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

B.L. Thomas

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

S.E. Eldridge

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Stange

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

F. Dell’Accio

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge