Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. P. Stiller is active.

Publication


Featured researches published by G. P. Stiller.


Geophysical Research Letters | 1996

The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS space shuttle missions

M. R. Gunson; M. M. Abbas; M. C. Abrams; Mark Allen; Linda R. Brown; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; L. L. Lowes; Emmanuel Mahieu; G. L. Manney; H. A. Michelsen; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon; Yuk L. Yung; Rodolphe Zander

The ATMOS Fourier transform spectrometer was flown for a fourth time on the Space Shuttle as part of the ATLAS-3 instrument payload in November 1994. More than 190 sunrise and sunset occultation events provided measurements of more than 30 atmospheric trace gases at latitudes 3–49°N and 65–72°S, including observations both inside and outside the Antarctic polar vortex. The instrument configuration, data retrieval methodology, and mission background are described to place in context analyses of ATMOS data presented in this issue.


Geophysical Research Letters | 1996

The 1994 northern midlatitude budget of stratospheric chlorine derived from ATMOS/ATLAS‐3 observations

Rodolphe Zander; Emmanuel Mahieu; M. R. Gunson; M. C. Abrams; A. Y. Chang; M. M. Abbas; C. P. Aellig; Andreas Engel; A. Goldman; F. W. Irion; Niklaus Kämpfer; H. A. Michelson; Michael J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; G. C. Toon

Volume mixing ratio (VMR) profiles of the chlorine-bearing gases HCl, ClONO2, CCl3F, CCl2F2, CHClF2, CCl4, and CH3Cl have been measured between 3 and 49° northern- and 65 to 72° southern latitudes with the Atmospheric Trace MOlecule Spectroscopy (ATMOS) instrument during the ATmospheric Laboratory for Applications and Science (ATLAS)-3 shuttle mission of 3 to 12 November 1994. A subset of these profiles obtained between 20 and 49°N at sunset, combined with ClO profiles measured by the Millimeter-wave Atmospheric Sounder (MAS) also from aboard ATLAS-3, measurements by balloon for HOCl, CH3CCl3 and C2Cl3F3, and model calculations for COClF indicates that the mean burden of chlorine, ClTOT, was equal to (3.53±0.10) ppbv (parts per billion by volume), 1-sigma, throughout the stratosphere at the time of the ATLAS 3 mission. This is some 37% larger than the mean 2.58 ppbv value measured by ATMOS within the same latitude zone during the Spacelab 3 flight of 29 April to 6 May 1985, consitent with an exponential growth rate of the chlorine loading in the stratosphere equal to 3.3%/yr or a linear increase of 0.10 ppbv/yr over the Spring-1985 to Fall-1994 time period. These findings are in agreement with both the burden and increase of the main anthropogenic Cl-bearing source gases at the surface during the 1980s, confirming that the stratospheric chlorine loading is primarily of anthropogenic origin.


Journal of the Atmospheric Sciences | 2005

Mixing Processes during the Antarctic Vortex Split in September–October 2002 as Inferred from Source Gas and Ozone Distributions from ENVISAT–MIPAS

N. Glatthor; T. von Clarmann; H. Fischer; B. Funke; U. Grabowski; M. Höpfner; S. Kellmann; M. Kiefer; A. Linden; M. Milz; T. Steck; G. P. Stiller; G. Mengistu Tsidu; Ding-Yi Wang

Abstract In late September 2002, an Antarctic major stratospheric warming occurred, which led to a strong distortion of the southern polar vortex and to a split of its mid- and upper-stratospheric parts. Such an event had never before been observed since the beginning of regular Antarctic stratospheric temperature observations in the 1950s. The split is studied by means of nonoperational level-2 CH4, N2O, CFC-11, and O3 data, retrieved at the Institute for Meteorology and Climate Research Karlsruhe (IMK) from high-resolution atmospheric limb emission spectra from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board the European research satellite, Environmental Satellite (ENVISAT). Retrieved horizontal and vertical distributions of CH4 and N2O show good consistency with potential vorticity fields of the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis for the entire period under investigation, even for fine structures such as vortex filaments. Tracer correlatio...


Atmospheric Chemistry and Physics | 2005

Spectroscopic evidence for NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds

M. Höpfner; Beiping Luo; Patrizio Massoli; F. Cairo; Reinhold Spang; Marcel Snels; G. Di Donfrancesco; G. P. Stiller; T. von Clarmann; H. Fischer; U. Biermann

Spectroscopic evidence for β-NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds M. Höpfner, B. P. Luo, P. Massoli, F. Cairo, R. Spang, M. Snels, G. Di Donfrancesco, G. Stiller, T. von Clarmann, H. Fischer, and U. Biermann Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung, Karlsruhe, Germany Institut für Atmosphäre und Klima, ETH-Hönggerberg, Zürich, Switzerland Consiglio Nazionale delle Ricerche, Istituto di Scienze dell’Atmosfera e del Clima, Rome, Italy Forschungszentrum Jülich, Institut für Chemie und Dynamik der Geosphäre, Jülich, Germany Ente per le Nuove tecnologie, l’Energie e l’Ambiente, Rome, Italy Max-Planck-Institut für Chemie, Abteilung Atmosphärenchemie, Mainz, Germany now at: Referat für Umweltund Energiepolitik des SPD-Parteivorstandes, Berlin, Germany


Journal of Geophysical Research | 2010

Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics

M. I. Hegglin; Andrew Gettelman; P. Hoor; R. Krichevsky; G. L. Manney; Laura L. Pan; Say-Jin Son; G. P. Stiller; Simone Tilmes; Kaley A. Walker; Veronika Eyring; Theodore G. Shepherd; Darryn W. Waugh; Hideharu Akiyoshi; Juan A. Añel; J. Austin; A. J. G. Baumgaertner; Slimane Bekki; Peter Braesicke; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; S. Dhomse; S. M. Frith; Hella Garny; Steven C. Hardiman; Patrick Jöckel; Douglas E. Kinnison; Jean-Francois Lamarque

A multimodel assessment of the performance of chemistry-climate models (CCMs) in the extratropical upper troposphere/lower stratosphere (UTLS) is conducted for the first time. Process-oriented diagnostics are used to validate dynamical and transport characteristics of 18 CCMs using meteorological analyses and aircraft and satellite observations. The main dynamical and chemical climatological characteristics of the extratropical UTLS are generally well represented by the models, despite the limited horizontal and vertical resolution. The seasonal cycle of lowermost stratospheric mass is realistic, however with a wide spread in its mean value. A tropopause inversion layer is present in most models, although the maximum in static stability is located too high above the tropopause and is somewhat too weak, as expected from limited model resolution. Similar comments apply to the extratropical tropopause transition layer. The seasonality in lower stratospheric chemical tracers is consistent with the seasonality in the Brewer-Dobson circulation. Both vertical and meridional tracer gradients are of similar strength to those found in observations. Models that perform less well tend to use a semi-Lagrangian transport scheme and/or have a very low resolution. Two models, and the multimodel mean, score consistently well on all diagnostics, while seven other models score well on all diagnostics except the seasonal cycle of water vapor. Only four of the models are consistently below average. The lack of tropospheric chemistry in most models limits their evaluation in the upper troposphere. Finally, the UTLS is relatively sparsely sampled by observations, limiting our ability to quantitatively evaluate many aspects of model performance.


Geophysical Research Letters | 1996

Stratospheric chlorine partitioning: Constraints from shuttle‐borne measurements of [HCl], [ClNO3], and [ClO]

H. A. Michelsen; R. J. Salawitch; M. R. Gunson; C. P. Aellig; Niklaus Kämpfer; M. M. Abbas; M. C. Abrams; T. L. Brown; A. Y. Chang; A. Goldman; F. W. Irion; M. J. Newchurch; C. P. Rinsland; G. P. Stiller; Rodolphe Zander

Measured stratospheric mixing ratios of HCl, ClNO3, and ClO from ATMOS and MAS are poorly reproduced by models using recommended kinetic parameters. This discrepancy is not resolved by new rates for the reactions Cl+CH4 and OH+HCl derived from weighted fits to laboratory measurements. A deficit in modeled [HCl] and corresponding overprediction of [ClNO3] and [ClO], which increases with altitude, suggests that production of HCl between 20 and 50 km is much faster than predicted from recommended rates.


Journal of Geophysical Research | 2005

An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003

G. P. Stiller; Gizaw Mengistu Tsidu; T. von Clarmann; N. Glatthor; M. Höpfner; S. Kellmann; A. Linden; R. Ruhnke; H. Fischer; M. López-Puertas; B. Funke; S. Gil-López

Vertical profiles of stratospheric HNO 3 were retrieved from limb emission spectra recorded by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the Envisat research satellite during the Antarctic winter 2003. A high second maximum of HNO 3 was found around 34 km altitude with abundances up to 14 ppbv HNO 3 during July. Similar high abundances have not been reported in the literature for previous winters, but for the subsequent Arctic winter 2003/2004, after severe perturbations due to solar proton events. The second HNO 3 maximum in the Antarctic stratosphere started to develop in early June 2003, reached peak values during July 2003, and decreased to about 7 ppbv at the end of August while being continuously transported downward before finally forming a single HNO 3 layer over all latitudes in the lower stratosphere together with the out-of-vortex primary HNO 3 maximum. The HNO 3 decrease in August 2003 was correlated with photochemical buildup of other NO v species as ClONO 2 and NO x . From the time scales observed, it can be ruled out that the 2003 long-term HNO 3 enhancements were caused by local gas phase reactions immediately after the solar proton event on 29 May 2003. Instead, HNO 3 was produced by ion cluster chemistry reactions and/or heterogeneous reactions on sulfate aerosols via N 2 O 5 from high amounts of NOy being continuously transported downward from the lower thermosphere during May to August.


Journal of Geophysical Research | 2014

Mesospheric and stratospheric NOy produced by energetic particle precipitation during 2002–2012

B. Funke; M. López-Puertas; G. P. Stiller; T. von Clarmann

Global distributions of the six principal reactive nitrogen (NOy) compounds (HNO3, NO2, NO, N2O5, ClONO2, and HNO4) have been derived from midinfrared limb emission spectra taken by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on board Envisat during 2002–2012. The obtained data set provides a unique climatological record of NOy in the middle atmosphere. The contribution of NOy produced by energetic particle precipitation (EPP) has been discriminated from that produced by N2O oxidation using a tracer correlation method based on MIPAS CH4 and CO observations. The EPP-NOy distributions, obtained in the vertical range 20–70km, allow to trace odd nitrogen polar winter descent from the mesosphere down to the middle and lower stratosphere, where it contributes to catalytic ozone destruction. Highest EPP-NOy concentrations (up to 1 ppmv) are found in the winter solstice mesosphere, decreasing continuously with time and toward lower altitudes. Springtime peak concentrations of a few parts per billion by volume are observed at 22–25km, demonstrating a regular EPP impact on the entire stratosphere. The interannual variation shows a clear solar cycle signal in consonance with geomagnetic activity variations. A pronounced hemispheric asymmetry of EPP-NOy is observed, with higher concentrations in the Southern Hemisphere (SH) and stronger variability in the Northern Hemisphere (NH). Poleward of 60°, EPP-NOy contributes to the winter NOy column at 20–70km by 10–40% in the SH and 1–30% in the NH. Smaller contributions (0.1–1%) are found at midlatitudes (30°–60°). This study provides the first assessment of EPP-NOy intrusions into the stratosphere based on globally available satellite data on a decadal scale.


Geophysical Research Letters | 1996

ATMOS/ATLAS-3 Observations of Long-Lived Tracers and Descent in the Antarctic Vortex in November 1994

M. C. Abrams; G. L. Manney; M. R. Gunson; M. M. Abbas; A. Y. Chang; A. Goldman; F. W. Irion; H. A. Michelsen; M. J. Newchurch; C. P. Rinsland; R. J. Salawitch; G. P. Stiller; Rodolphe Zander

Observations of the long-lived tracers N2O, CH4 and HF obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in early November 1994 are used to estimate average descent rates during winter in the Antarctic polar vortex of 0.5 to 1.5 km/month in the lower stratosphere, and 2.5 to 3.5 km/month in the middle and upper stratosphere. Descent rates inferred from ATMOS tracer observations agree well with theoretical estimates obtained using radiative heating calculations. Air of mesospheric origin (N2O < 5 ppbV) was observed at altitudes above about 25 km within the vortex. Strong horizontal gradients of tracer mixing ratios, the presence of mesospheric air in the vortex in early spring, and the variation with altitude of inferred descent rates indicate that the Antarctic vortex is highly isolated from midlatitudes throughout the winter from approximately 20 km to the stratopause. The 1994 Antarctic vortex remained well isolated between 20 and 30 km through at least mid-November.


Geophysical Research Letters | 1996

A Comparison of Measurements from ATMOS and Instruments Aboard the ER-2 Aircraft: Tracers of Atmospheric Transport

A. Y. Chang; R. J. Salawitch; H. A. Michelsen; M. R. Gunson; M. C. Abrams; Rodolphe Zander; C. P. Rinsland; M. Loewenstein; J. R. Podolske; M. H. Proffitt; J. J. Margitan; D. W. Fahey; R. S. Gao; K. K. Kelly; J. W. Elkins; C. R. Webster; Randy D. May; K. R. Chan; M. M. Abbas; A. Goldman; F. W. Irion; G. L. Manney; Michael J. Newchurch; G. P. Stiller

We compare volume mixing ratio profiles of N2O, O3, NOy, H2O, CH4, and CO in the mid-latitude lower stratosphere measured by the ATMOS Fourier transform spectrometer on the ATLAS-3 Space Shuttle Mission with in situ measurements acquired from the NASA ER-2 aircraft during Nov 1994. ATMOS and ER-2 observations of [N2O] show good agreement, as do measured correlations of [O3], [NOy], [H2O], and [CH4] with [N2O]. Thus a consistent measure of the hydrogen (H2O, CH4) content of the lower stratosphere is provided by the two platforms. The similarity of [NOy] determined by detection of individual species by ATMOS and the total [NOy] measurement on the ER-2 provides strong corroboration for the accuracy of both techniques. A 25% discrepancy in lower stratospheric [CO] observed by ATMOS and the ER-2 remains unexplained. Otherwise, the agreement for measurements of long-lived tracers demonstrates the ability to combine ATMOS data with in situ observations for quantifying atmospheric transport.

Collaboration


Dive into the G. P. Stiller's collaboration.

Top Co-Authors

Avatar

T. von Clarmann

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. Funke

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Höpfner

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

N. Glatthor

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. López-Puertas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

S. Kellmann

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

U. Grabowski

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Linden

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Kiefer

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge