Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. P. Tsironis is active.

Publication


Featured researches published by G. P. Tsironis.


Physics Reports | 1999

WAVE TRANSMISSION IN NONLINEAR LATTICES

D Hennig; G. P. Tsironis

Abstract The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schrodinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schrodinger equation and the integrable Albowitz–Ladik equation. We utilize this analysis in a nonlinear Kronig–Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier–Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems.


Physical Review Letters | 2006

Discrete Breathers in Nonlinear Magnetic Metamaterials

N. Lazarides; M. Eleftheriou; G. P. Tsironis

Magnetic metamaterials composed of split-ring resonators or U-type elements may exhibit discreteness effects in THz and optical frequencies due to weak coupling. We consider a model one-dimensional metamaterial formed by a discrete array of nonlinear split-ring resonators where each ring interacts with its nearest neighbors. On-site nonlinearity and weak coupling among the individual array elements result in the appearance of discrete breather excitations or intrinsic localized modes, both in the energy-conserved and the dissipative system. We analyze discrete single and multibreather excitations, as well as a special breather configuration forming a magnetization domain wall and investigate their mobility and the magnetic properties their presence induces in the system.


Applied Physics Letters | 2007

rf superconducting quantum interference device metamaterials

N. Lazarides; G. P. Tsironis

An rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability, above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing its tuning by a slight change of the intensity of the applied field.A rf superconducting quantum interference device (SQUID) array in an alternating magnetic field is investigated with respect to its effective magnetic permeability, within the effective medium approximation. This system acts as an inherently nonlinear magnetic metamaterial, leading to negative magnetic response, and thus negative permeability above the resonance frequency of the individual SQUIDs. Moreover, the permeability exhibits oscillatory behavior at low field intensities, allowing its tuning by a slight change of the intensity of the applied field.


Physica B-condensed Matter | 2001

Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers

Serge Aubry; Georgios Kopidakis; Anna Maria Morgante; G. P. Tsironis

It is well known that any amount of energy injected in a harmonic oscillator which is resonant and weakly coupled with a second harmonic oscillator, tunnels back and forth between these two oscillators. When the two oscillators are anharmonic, the amplitude dependence of their frequencies breaks, in general, any eventual initial resonance so that no substantial energy transfer occurs unless, exceptionally, an almost perfect resonance persists. This paper considers this interesting situation more generally between two discrete breathers belonging to two weakly coupled nonlinear systems, finite or infinite. A specific amount of energy injected as a discrete breather in a nonlinear system (donor) which is weakly coupled to another nonlinear system (acceptor) sustaining another discrete breather, might be totally transferred and oscillate back and forth between these donor and acceptor breathers. The condition is that a certain well-defined detuning function is bounded from above and below by two coupling functions. This targeted energy transfer is selective, i.e., it only occurs for an initial energy close to a specific value. The explicit calculation of these functions in complex models with numerical techniques developed earlier for discrete breathers, allows one to detect the existence of possible targeted energy transfer, between which breathers, and at which energy. It should also help for designing models having desired targeted energy transfer properties at will. We also show how extra linear resonances could make the energy transfer incomplete and irreversible. Future developments of the theory will be able to describe more spectacular effects, such as targeted energy transfer cascades and avalanches, and energy funnels. Besides rather short-term applications for artificially built devices, this theory might provide an essential clue for understanding puzzling problems of energy kinetics in real materials, chemistry, and bioenergetics.


Physica D: Nonlinear Phenomena | 1993

Dynamics of self-trapping in the discrete nonlinear Schro¨dinger equation

M.I. Molina; G. P. Tsironis

Abstract We study dynamical aspects of the discrete nonlinear Schrodinger equation (DNLS) for chains of different sizes with periodic and open boundary conditions. We focus on the occurrence of a self-trapping transition in the different geometries. The initial condition used is that which places the particle (or power) on one lattice site (or nonlinear waveguide) and the quantity studied is the time-averaged probability for the particle to remain in that site. We show that the self-trapping transition in long chains occurs for parameter values not very different from that for very small clusters.


Physics Letters A | 1988

Initial condition effects in the evolution of a nonlinear dimer

G. P. Tsironis; V. M. Kenkre

Abstract The initial state analysis of the evolution of a nonlinear degenerate dimer shows that, in addition to the self-trapping transition, a new transition occurs while the particle is in the trapped region. This transition can be understood in part in terms of the behavior of a linear nondegenerate dimer, and is intimately related to the stationary states of the nonlinear dimer.


Physical Review E | 2008

Magnetoinductive breathers in metamaterials.

Maria Eleftheriou; N. Lazarides; G. P. Tsironis

The existence and stability of discrete breathers (DBs) in one- and two-dimensional magnetic metamaterials (MMs), which consist of periodic arrangements (arrays) of split-ring resonators (SRRs), are investigated numerically. We consider different configurations of the SRR arrays, which are related to the relative orientation of the SRRs in the MM, in both one and two spatial dimensions. In the latter case we also consider anisotropic MMs. Using standard numerical methods we construct several types of linearly stable breather excitation in both Hamiltonian and dissipative MMs (dissipative breathers). The study of stability in both cases is performed using standard Floquet analysis. In both cases we find that the increase of dimensionality from one to two spatial dimensions does not destroy the DBs, which may also exist in the case of moderate anisotropy (in two dimensions). In dissipative MMs, the dynamics is governed by a power balance between the mainly Ohmic dissipation and driving by an alternating magnetic field. In that case it is demonstrated that DB excitation locally alters the magnetic response of MMs from paramagnetic to diamagnetic. Moreover, when the frequency of the applied field approaches the SRR resonance frequency, the magnetic response of the MM in the region of the DB excitation may even become negative (extremely diamagnetic).


European Physical Journal B | 2000

Discrete nonlinear Schrödinger breathers in a phonon bath

Kim Ø. Rasmussen; S. Aubry; A. R. Bishop; G. P. Tsironis

Abstract:We study the dynamics of the discrete nonlinear Schrödinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather.


Physics Letters A | 1999

Directional Newtonian motion and reversals of molecular motors

G.N. Stratopoulos; T.E. Dialynas; G. P. Tsironis

Abstract Several biological molecular motors, for instance kinesin and non-claret disjunctional (ncd), belonging to the same superfamily of motor proteins move towards opposite ends of microtubules. It is clear that motor protein motion is powered through ATP hydrolysis, but neither the specifics of the chemical to mechanical energy transduction nor the molecular basis for motion directionality are precisely known. While the protein catalytic domain seems to be responsible for the processibility of the motor on the microtubule, the “neck” region adjacent to the motor heads was found recently to control the directionality of movement. We show here that a simple Newtonian model of two motor head particles connected through a neck coiled-coil spring whose rest length changes with each ATP hydrolysis event captures the essential motor dynamics features. In particular, the observed directionality reversal in chimaeras with different coiled-coil regions results in the model from a change in the stiffness of the spring coefficient. We find that motor speed is determined by the average ATP absorption rate while the effect of ambient temperature is relatively small, leading to essentially non-Brownian, deterministic motor motion.


Physical Review E | 2007

Self-focusing and envelope pulse generation in nonlinear magnetic metamaterials.

Ioannis Kourakis; N. Lazarides; G. P. Tsironis

The self-modulation of waves propagating in nonlinear magnetic metamaterials is investigated. Considering the propagation of a modulated amplitude magnetic field in such a medium, we show that the self-modulation of the carrier wave leads to a spontaneous energy localization via the generation of localized envelope structures (envelope solitons), whose form and properties are discussed. These results are also supported by numerical calculations.

Collaboration


Dive into the G. P. Tsironis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. M. Sancho

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.I. Molina

University of North Texas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. M. Kenkre

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

A. R. Bishop

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge