Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Petekidis is active.

Publication


Featured researches published by G. Petekidis.


Physical Review Letters | 2010

Probing the Equilibrium Dynamics of Colloidal Hard Spheres above the Mode-Coupling Glass Transition

G Brambilla; D. El Masri; M. Pierno; Ludovic Berthier; Luca Cipelletti; G. Petekidis; Ab Schofield

We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, � � , including equilibrium measurements above ’c, the location of the glass transition deduced from fitting our data to mode-coupling theory. Instead of falling out of equilibrium, the system remains ergodic above ’c and enters a new dynamical regime where � � increases with a functional form that was not anticipated by previous experiments, while the amplitude of dynamic heterogeneity grows slower than a power law with � � , as found in molecular glass formers close to the glass transition.


Soft Matter | 2011

Two step yielding in attractive colloids: transition from gels to attractive glasses

Nick Koumakis; G. Petekidis

Steady and oscillatory rheology was utilized to study the mechanical response of colloidal glasses and gels with particular emphasis in their yielding behaviour. We used a suspension of hard sphere colloidal particles with short-range depletion attractions induced by the addition of non-adsorbing linear polymer. While high volume fraction hard sphere glasses exhibit a single yield point due to cage breaking, attraction dominated glasses show a two-step yielding reflecting bond and cage breaking, respectively. Here we investigated the yielding behaviour of frustrated colloid–polymer systems with equal attraction strength and range, varying the particle volume fraction, φ, spanning the region from an attractive glass (φ = 0.6) to a low volume fraction (φ = 0.1) attractive gel. Yielding throughout this range, probed both by oscillatory and steady shear, is found to remain a two step process until very low φs. The first yield strain related with in-cage or inter-cluster bond braking remains constant for φ > 0.3 while the second yield strain, attributed to braking of cages or clusters into smaller constituents, increases as volume fraction is decreased due to enhancement of structural inhomogeneities in the gel. Steady shear tests indicated distinct shear rate regimes: At steady state, low and intermediate shear rates create denser or smaller flowing clusters, whereas high rates may lead to complete break-up into independent particles. When the range of attraction was increased, both yield strains increased scaling with the range of attraction and accompanied structural changes. Finally, ageing leads to an overall strengthening of both the gel and the attractive glass accompanied by an enhancement of the second stress overshoot in steady shear, while the attractive glass also becomes more brittle.


Physical Review Letters | 2010

Shear Banding and Flow-Concentration Coupling in Colloidal Glasses

Rut Besseling; Lucio Isa; P. Ballesta; G. Petekidis; Michael Cates; Wilson Poon

We report experiments on hard-sphere colloidal glasses that show a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability due to shear-concentration coupling, a mechanism previously thought unimportant in these materials. Below a characteristic shear rate γ(c) we observe increasingly nonlinear and localized velocity profiles. We attribute this to very slight concentration gradients in the unstable flow regime. A simple model accounts for both the observed increase of γ(c) with concentration, and the fluctuations in the flow.


Journal of Rheology | 2009

Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles

Vincent Carrier; G. Petekidis

The way a colloidal glass flows under the influence of external shear is still not fully understood. Here, we study the rheology of glasses of soft thermosensitive core-shell particles with particular emphasis on nonlinear oscillatory and steady measurements and present a comprehensive set of data which display strong nonlinear effects. Step rate experiments exhibit stress overshoots which increase with shear rate, while dynamic strain sweeps reveal a peak in the loss modulus and a yield strain that increases with volume fraction and frequency. Moreover, a Fourier transform analysis of oscillatory measurements yields a significant contribution of high harmonics in the stress which peaks in the shear thinning regime acquiring values up to 25%. A key question is whether shear induced melting is caused by a simple advection process where the shear induced relaxation time, τ, scales inversely proportional with the shear rate, τ∝γ−1, or is governed by the energy flow in the system, thus depending on both stre...


Journal of Chemical Physics | 2009

Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels

Marco Laurati; G. Petekidis; Nick Koumakis; Fred Cardinaux; Andrew B. Schofield; Joseph M. Brader; Matthias Fuchs; Stefan U. Egelhaaf

We investigate the structural, dynamical, and viscoelastic properties of colloid-polymer mixtures at intermediate colloid volume fraction and varying polymer concentrations, thereby tuning the attractive interactions. Within the examined range of polymer concentrations, the samples varied from fluids to gels. In the liquid phase, an increasing correlation length of the density fluctuations when approaching the gelation boundary was observed by static light scattering and microscopy, indicating clustering and formation of space-spanning networks. Simultaneously, the correlation function determined by dynamic light scattering decays completely, indicating the absence of dynamical arrest. Clustering and formation of transient networks when approaching the gelation boundary is supported by significant changes in the viscoelastic properties of the samples. Upon increasing the polymer concentration beyond the gelation boundary, the rheological properties changed qualitatively again, now they are consistent with the formation of colloidal gels. Our experimental results, namely, the location of the gelation boundary as well as the elastic (storage) and viscous (loss) moduli, are compared to different theoretical models. These include consideration of the escape time as well as predictions for the viscoelastic moduli based on scaling relations and mode coupling theories.


Soft Matter | 2012

Direct comparison of the rheology of model hard and soft particle glasses

Nick Koumakis; A. Pamvouxoglou; Andreas S. Poulos; G. Petekidis

The effects of particle softness and the role of the outer shell mechanics on the linear viscoelasticity and yielding behaviour of colloidal glasses are critically assessed using three different model colloidal particles: (i) sterically stabilized PMMA particles with model hard sphere interactions, (ii) core–shell microgels with a deformable PNIPAM outer shell and (iii) ultra-soft star-like micelles with inter-penetrable multi-arms. The volume fraction dependence of the elastic modulus and the yield stress reflects the softness of the effective inter-particle potential. The yield strain exhibits distinct non-monotonic volume fraction dependence for hard spheres below close packing whereas for both soft particles it increases above close packing due to particle softness. Stress overshoots in start-up shear show a common increase with shear rate in all systems. However, the stress overshoots are significantly stronger in star-like micelles due to transient arm entanglements. In relation with that similar stress peaks are detected within the period of the large amplitude oscillatory shear only in star-like micelles. Finally, we discuss the scaling exponents for the G′ and G′′ decrease at large oscillatory strain amplitudes and their relation with steady shear stress.


Philosophical Transactions of the Royal Society A | 2009

Ageing and yield behaviour in model soft colloidal glasses

C. Christopoulou; G. Petekidis; Brian M. Erwin; Michel Cloitre; Dimitris Vlassopoulos

We use multi-arm star polymers as model soft colloids with tuneable interactions and explore their behaviour in the glassy state. In particular, we perform a systematic rheological study with a well-defined protocol and address aspects of ageing and shear melting of star glasses. Ageing proceeds in two distinct steps: a fast step of O(103 s) and a slow step of O(104 s). We focus on creep and recovery tests, which reveal a rich, albeit complex response. Although the waiting time, the time between pre-shear (rejuvenation) of the glassy sample and measurement, affects the material’s response, it does not play the same role as in other soft glasses. For stresses below the yield value, the creep curve is divided into three regimes with increasing time: viscoplastic, intermediate steady flow (associated with the first ageing step) and long-time evolving elastic solid. This behaviour reflects the interplay between ageing and shear rejuvenation. The yield behaviour, as investigated with the stress-dependent recoverable strain, indicates a highly nonlinear elastic response intermediate between a low-stress Hookean solid and a high-stress viscoelastic liquid, and exemplifies the distinct characteristics of this class of hairy colloids. It appears that a phenomenological classification of different colloidal glasses based on yielding performance may be possible.


Journal of Rheology | 2012

Wall slip and flow of concentrated hard-sphere colloidal suspensions

P. Ballesta; G. Petekidis; Lucio Isa; Wilson Poon; Rut Besseling

We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, nonstick walls, the solid nature of the suspension causes a transition in the rheology from Herschel–Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (subcolloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspension’s osmotic pressure an...


Journal of Rheology | 2010

Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)

Frédéric Renou; Jörg Stellbrink; G. Petekidis

The understanding of yielding and flow of a colloidal glass under large amplitude oscillatory shear (LAOS) represents a motivating challenge. Monitoring the higher harmonics in the stress signal by Fourier-transform (FT) rheology may provide useful insight on the progressive transition from linear to nonlinear viscoelastic response. However, the physical interpretation of FT-rheology data is still not obvious. Here we study the process of yielding in a colloidal glass formed by star-like block copolymer micelles with LAOS experiments and interrogate the nonlinear intracycle stress response by FT analysis and decomposition to an orthogonal set of Chebyshev polynomials [Ewoldt, R. H., et al. J. Rheol. 52(6), 1427–1458 (2008)]. Such approach provides a robust framework enabling us to map out a rich phenomenology of intracylce nonlinearities that may relate to distinct physical mechanisms. We find that the nonlinearities during yielding are represented by intracylce shear thickening/thinning and strain harden...


Soft Matter | 2008

Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses

Nick Koumakis; Andrew B. Schofield; G. Petekidis

The rheological properties of highly concentrated suspensions of hard sphere particles are studied with particular reference to the rheological response of shear induced crystals. Using practically monodisperse hard spheres, we prepare shear induced crystals under oscillatory shear and examine their linear and non-linear mechanical responses in comparison with their glassy counterparts at the same volume fraction. It is evident, that shear induced crystallization causes a significant drop in the elastic and viscous moduli due to structural rearrangements that ease flow. For the same reason the critical (peak of G″) and crossover (overlap of G′ and G″) strain are smaller in the crystal compared to the glass at the same volume fraction. However, when the distance from the maximum packing in each state is taken into account the elastic modulus of the crystal is found to be larger than the glass at the same free volume, suggesting a strengthened material due to long range order. Finally, shear induced crystals counter-intuitively exhibit similar rheological ageing to the glass (with a logarithmic increase of G′), indicating that the shear induced structure is not at thermodynamic equilibrium.

Collaboration


Dive into the G. Petekidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Brady

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Wilson Poon

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Laurati

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge