G. Petitpas
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Petitpas.
Nature | 2013
Dominik A. Riechers; C. M. Bradford; D. L. Clements; C. D. Dowell; I. Perez-Fournon; R. J. Ivison; C. Bridge; A. Conley; Hai Fu; J. D. Vieira; J. L. Wardlow; Jae Calanog; A. Cooray; P. D. Hurley; R. Neri; J. Kamenetzky; James E. Aguirre; B. Altieri; V. Arumugam; Dominic J. Benford; M. Béthermin; J. J. Bock; D. Burgarella; A. Cabrera-Lavers; Sydney Chapman; P. Cox; James Dunlop; L. Earle; D. Farrah; P. Ferrero
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts—that is, increased rates of star formation—in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ∼5 (refs 2–4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A ‘maximum starburst’ converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
Nature | 2011
B. A. Zauderer; Edo Berger; Alicia M. Soderberg; Abraham Loeb; Ramesh Narayan; D. A. Frail; G. Petitpas; A. Brunthaler; Ryan Chornock; John M. Carpenter; G. G. Pooley; K. Mooley; S. R. Kulkarni; Raffaella Margutti; D. B. Fox; Ehud Nakar; Nimesh A. Patel; N. H. Volgenau; T. L. Culverhouse; M. F. Bietenholz; M. P. Rupen; W. Max-Moerbeck; Anthony C. S. Readhead; J. Richards; M. Shepherd; S. Storm; Charles L. H. Hull
Active galactic nuclei, which are powered by long-term accretion onto central supermassive black holes, produce relativistic jets with lifetimes of at least one million years, and the observation of the birth of such a jet is therefore unlikely. Transient accretion onto a supermassive black hole, for example through the tidal disruption of a stray star, thus offers a rare opportunity to study the birth of a relativistic jet. On 25 March 2011, an unusual transient source (Swift J164449.3+573451) was found, potentially representing such an accretion event. Here we report observations spanning centimetre to millimetre wavelengths and covering the first month of evolution of a luminous radio transient associated with Swift J164449.3+573451. The radio transient coincides with the nucleus of an inactive galaxy. We conclude that we are seeing a newly formed relativistic outflow, launched by transient accretion onto a million-solar-mass black hole. A relativistic outflow is not predicted in this situation, but we show that the tidal disruption of a star naturally explains the observed high-energy properties and radio luminosity and the inferred rate of such events. The weaker beaming in the radio-frequency spectrum relative to γ-rays or X-rays suggests that radio searches may uncover similar events out to redshifts of z ≈ 6.
The Astrophysical Journal | 2009
Daisuke Iono; C. D. Wilson; Min S. Yun; Andrew J. Baker; G. Petitpas; Alison B. Peck; M. Krips; Thomas J. Cox; Satoki Matsushita; J. Christopher Mihos; Ylva M. Pihlstrom
We present a detailed comparison of the CO (3-2) emitting molecular gas between a local sample of luminous infrared galaxies (U/LIRGs) and a high-redshift sample that comprises submm selected galaxies (SMGs), quasars, and Lyman Break Galaxies (LBGs). The U/LIRG sample consists of our recent CO (3-2) survey using the Submillimeter Array while the CO (3-2) data for the high-redshift population are obtained from the literature. We find that the and L FIR relation is correlated over five orders of magnitude, which suggests that the molecular gas traced in CO (3-2) emission is a robust tracer of dusty star formation activity. The near unity slope of 0.93 ? 0.03 obtained from a fit to this relation suggests that the star formation efficiency is constant to within a factor of 2 across different types of galaxies residing in vastly different epochs. The CO (3-2) size measurements suggest that the molecular gas disks in local U/LIRGs (0.3-3.1?kpc) are much more compact than the SMGs (3-16?kpc), and that the size scales of SMGs are comparable to the nuclear separation (5-40?kpc) of the widely separated nuclei of U/LIRGs in our sample. We argue from these results that the SMGs studied here are predominantly intermediate stage mergers, and that the wider line widths arise from the violent merger of two massive gas-rich galaxies taking place deep in a massive halo potential.
Astrophysical Journal Supplement Series | 2008
Christine D. Wilson; G. Petitpas; Daisuke Iono; Andrew J. Baker; Alison B. Peck; M. Krips; B. E. Warren; Jennifer Golding; Adam Atkinson; Lee Armus; Thomas J. Cox; Paul T. P. Ho; M. Juvela; Satoki Matsushita; J. Christopher Mihos; Ylva M. Pihlstrom; Min S. Yun
We present new data obtained with the Submillimeter Array for a sample of 14 nearby luminous and ultraluminous infrared galaxies. The galaxies were selected to have distances D_L 11.4. The galaxies were observed with spatial resolutions of order 1 kpc in the CO J = 3–2, CO J = 2–1,^(13)CO J = 2–1, and HCO+ J = 4–3 lines as well as the continuum at 880 μm and 1.3 mm. We have combined our CO and continuum data to measure an average gas-to-dust mass ratio of 120 ± 28 (rms deviation 109) in the central regions of these galaxies, very similar to the value of 150 determined for the Milky Way. This similarity is interesting given the more intense heating from the starburst and possibly accretion activity in the luminous infrared galaxies compared to the Milky Way. We find that the peak H_2 surface density correlates with the far-infrared luminosity, which suggests that galaxies with higher gas surface densities inside the central kiloparsec have a higher star formation rate. The lack of a significant correlation between total H_2 mass and far-infrared luminosity in our sample suggests that the increased star formation rate is due to the increased availability of molecular gas as fuel for star formation in the central regions. In contrast to previous analyses by other authors, we do not find a significant correlation between central gas surface density and the star formation efficiency, as traced by the ratio of far-infrared luminosity to nuclear gas mass. Our data show that it is the star formation rate, not the star formation efficiency, that increases with increasing central gas surface density in these galaxies.
The Astrophysical Journal | 2009
Joshua D. Younger; Giovanni G. Fazio; Jia-Sheng Huang; Min S. Yun; Grant W. Wilson; Matthew L. N. Ashby; M. A. Gurwell; Alison B. Peck; G. Petitpas; David J. Wilner; David H. Hughes; Itziar Aretxaga; Sungeun Kim; K. S. Scott; J. E. Austermann; T. A. Perera; James D. Lowenthal
We present results from a continuing interferometric survey of high-redshift submillimeter galaxies with the Submillimeter Array, including high-resolution (beam size ~2 arcsec) imaging of eight additional AzTEC 1.1mm selected sources in the COSMOS Field, for which we obtain six reliable (peak S/N>5 or peak S/N>4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N>4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric followup. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology - including the nature of submillimeter galaxies with multiple radio counterparts and constraints on the physical scale of the far infrared - of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim submillimeter galaxies that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation - which struggle to account for such objects even under liberal assumptions - and dust production models given the limited time since the Big Bang.
The Astrophysical Journal | 2008
Sera Markoff; Michael A. Nowak; Andrew Young; Herman L. Marshall; Claude R. Canizares; Alison B. Peck; M. Krips; G. Petitpas; R. Schödel; Geoffrey C. Bower; P. Chandra; Alak Ray; Michael P. Muno; S. C. Gallagher; Seth David Hornstein; C. C. Cheung
We present the results of a broadband simultaneous campaign on the nearby low-luminosity active galactic nucleus M81*. From 2005 February through August, we observed M81* five times using the Chandra X-Ray Observatory with the HETGS, complemented by ground-based observations with the Giant Meterwave Radio Telescope, the Very Large Array and Very Large Baseline Array, the Plateau de Bure Interferometer at IRAM, the Submillimeter Array, and Lick Observatory. We discuss how the resulting spectra vary over short and longer timescales compared to previous results, especially in the X-rays where this is the first ever longer term campaign at spatial resolution high enough to nearly isolate the nucleus (17 pc). We compare the spectrum to our Galactic center weakly active nucleus Sgr A*, which has undergone similar campaigns, as well as to weakly accreting X-ray binaries in the context of outflow-dominated models. In agreement with recent results suggesting that the physics of weakly accreting black holes scales predictably with mass, we find that the exact same model that successfully describes hard-state X-ray binaries applies to M81*, with very similar physical parameters.
The Astrophysical Journal | 2009
C. D. Wilson; B. E. Warren; F. P. Israel; S. Serjeant; G. J. Bendo; Elias Brinks; D. L. Clements; Stephane Courteau; Judith A. Irwin; J. H. Knapen; J. Leech; H. E. Matthews; S. Mühle; A. M. J. Mortier; G. Petitpas; E. Sinukoff; Kristine Spekkens; B. K. Tan; R. P. J. Tilanus; A. Usero; P. van der Werf; T. Wiegert; M. Zhu
We present large-area maps of the CO J = 3-2 emission obtained at the James Clerk Maxwell Telescope for four spiral galaxies in the Virgo Cluster. We combine these data with published CO J = 1-0, 24 μm, and Hα images to measure the CO line ratios, molecular gas masses, and instantaneous gas depletion times. For three galaxies in our sample (NGC 4254, NGC 4321, and NGC 4569), we obtain molecular gas masses of 7 × 108 – 3 × 109 M ☉ and disk-averaged instantaneous gas depletion times of 1.1-1.7 Gyr. We argue that the CO J = 3-2 line is a better tracer of the dense star-forming molecular gas than the CO J = 1-0 line, as it shows a better correlation with the star formation rate surface density both within and between galaxies. NGC 4254 appears to have a larger star formation efficiency (smaller gas depletion time), perhaps because it is on its first passage through the Virgo Cluster. NGC 4569 shows a large-scale gradient in the gas properties traced by the CO J = 3-2/J = 1-0 line ratio, which suggests that its interaction with the intracluster medium is affecting the dense star-forming portion of the interstellar medium directly. The fourth galaxy in our sample, NGC 4579, has weak CO J = 3-2 emission despite having bright 24 μm emission; however, much of the central luminosity in this galaxy may be due to the presence of a central active galactic nucleus.
The Astrophysical Journal | 2012
Alicia M. Soderberg; R. Margutti; B. A. Zauderer; Miriam I. Krauss; B. Katz; Laura Chomiuk; Jason A. Dittmann; Ehud Nakar; Takanori Sakamoto; Nobuyuki Kawai; K. Hurley; S. D. Barthelmy; Takahiro Toizumi; Mikio Morii; Roger A. Chevalier; M. A. Gurwell; G. Petitpas; Michael P. Rupen; K. D. Alexander; Emily M. Levesque; Claes Fransson; A. Brunthaler; M. F. Bietenholz; N. N. Chugai; J. E. Grindlay; Antonio Copete; V. Connaughton; M. S. Briggs; Charles A. Meegan; A. von Kienlin
– 3 –the first three weeks after explosion. Combining these observations with earlyoptical photometry, we show that the panchromatic dataset is well-described bynon-thermal synchrotron emission (radio/mm) with inverse Compton scattering(X-ray) of a thermal population of optical photons. We derive the properties ofthe shockwave and the circumstellar environment and find a time-averaged shockvelocity of v ≈ 0.1c and a progenitor mass loss rate of M˙ ≈ 6 × 10
Astronomy and Astrophysics | 2014
S. Schulze; Daniele Malesani; Antonino Cucchiara; Nial R. Tanvir; T. Krühler; A. de Ugarte Postigo; G. Leloudas; J. D. Lyman; D. F. Bersier; K. Wiersema; Daniel A. Perley; Patricia Schady; Javier Gorosabel; J. P. Anderson; A. J. Castro-Tirado; S. B. Cenko; A. De Cia; L. E. Ellerbroek; J. P. U. Fynbo; J. Greiner; J. Hjorth; D. A. Kann; L. Kaper; Sylvio Klose; Andrew J. Levan; S. Martín; P. T. O’Brien; Kim L. Page; Giuliano Pignata; S. Rapaport
Context. At low redshift, a handful of gamma-ray bursts (GRBs) have been discovered with luminosities that are substantially lower (Liso 10 49.5 erg s −1 ). It has been suggested that the properties of several low-luminosity (low-L) GRBs are due to shock break-out, as opposed to the emission from ultrarelativistic jets. This has led to much debate about how the populations are connected. Aims. The burst at redshift z = 0.283 from 2012 April 22 is one of the very few examples of intermediate-L GRBs with a γ-ray luminosity of Liso ∼ 10 49.6−49.9 erg s −1 that have been detected up to now. With the robust detection of its accompanying supernova SN 2012bz, it has the potential to answer important questions on the origin of low- and high-L GRBs and the GRB-SN connection. Methods. We carried out a spectroscopy campaign using medium- and low-resolution spectrographs with 6–10-m class telescopes, which covered a time span of 37.3 days, and a multi-wavelength imaging campaign, which ranged from radio to X-ray energies over a duration of ∼270 days. Furthermore, we used a tuneable filter that is centred at Hα to map star-formation in the host and the surrounding galaxies. We used these data to extract and model the properties of different radiation components and fitted the spectral energy distribution to extract the properties of the host galaxy. Results. Modelling the light curve and spectral energy distribution from the radio to the X-rays revealed that the blast wave expanded with an initial Lorentz factor of Γ0 ∼ 50, which is a low value in comparison to high-L GRBs, and that the afterglow had an exceptionally low peak luminosity density of <2 × 10 30 erg s −1 Hz −1 in the sub-mm. Because of the weak afterglow component, we were able to recover the signature of a shock break-out in an event that was not a genuine low-L GRB for the first time. At 1.4 hr after the burst, the stellar envelope had a blackbody temperature of kBT ∼ 16 eV and a radius of ∼7 × 10 13 cm (both in the observer frame). The accompanying SN 2012bz reached a peak luminosity of MV = −19.7 mag, which is 0.3 mag more luminous than SN 1998bw. The synthesised nickel mass of 0.58 M� , ejecta mass of 5.87 M� ,a nd kinetic energy of 4.10 × 10 52 erg were among the highest for GRB-SNe, which makes it the most luminous spectroscopically confirmed SN to date. Nebular emission lines at the GRB location were visible, which extend from the galaxy nucleus to the explosion site. The host and the explosion site had close-to-solar metallicity. The burst occurred in an isolated star-forming region with an SFR that is 1/10 of that in the galaxy’s nucleus. Conclusions. While the prompt γ-ray emission points to a high-L GRB, the weak afterglow and the low Γ0 were very atypical for such a burst. Moreover, the detection of the shock break-out signature is a new quality for high-L GRBs. So far, shock break-outs were exclusively detected for low-L GRBs, while GRB 120422A had an intermediate Liso of ∼10 49.6−49.9 erg s −1 . Therefore, we conclude that GRB 120422A was a transition object between low- and high-L GRBs, which supports the failed-jet model that connects low-L GRBs that are driven by shock break-outs and high-L GRBs that are powered by ultra-relativistic jets.
The Astrophysical Journal | 2013
C. Darren Dowell; A. Conley; J. Glenn; V. Arumugam; V. Asboth; H. Aussel; Frank Bertoldi; M. Béthermin; J. J. Bock; A. Boselli; C. Bridge; V. Buat; D. Burgarella; A. Cabrera-Lavers; Caitlin M. Casey; S. C. Chapman; D. L. Clements; L. Conversi; A. Cooray; H. Dannerbauer; F. De Bernardis; T. P. Ellsworth-Bowers; D. Farrah; A. Franceschini; Matthew Joseph Griffin; M. A. Gurwell; M. Halpern; E. Hatziminaoglou; S. Heinis; E. Ibar
We present a method for selecting z > 4 dusty, star-forming galaxies (DSFGs) using Herschel/Spectral and Photometric Imaging Receiver 250/350/500 μm flux densities to search for red sources. We apply this method to 21 deg2 of data from the HerMES survey to produce a catalog of 38 high-z candidates. Follow-up of the first five of these sources confirms that this method is efficient at selecting high-z DSFGs, with 4/5 at z = 4.3-6.3 (and the remaining source at z = 3.4), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 μm) and in single-band surveys, shows that our method is much more efficient at selecting high-z DSFGs, in the sense that a much larger fraction are at z > 3. Correcting for the selection completeness and purity, we find that the number of bright (S 500 μm ≥ 30 mJy), red Herschel sources is 3.3 ± 0.8 deg–2. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-z DSFGs is similar to that at z ~ 2, rest-frame UV based studies may be missing a significant component of the star formation density at z = 4-6, even after correction for extinction.