Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Pietrzyński is active.

Publication


Featured researches published by G. Pietrzyński.


Nature | 2011

Unbound or distant planetary mass population detected by gravitational microlensing

T. Sumi; K. Kamiya; D. P. Bennett; I. A. Bond; F. Abe; C. S. Botzler; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; M. Motomura; Y. Muraki; M. Nagaya; S. Nakamura; K. Ohnishi; T. Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; D. J. Sullivan; W. L. Sweatman; P. J. Tristram

Since 1995, more than 500 exoplanets have been detected using different techniques, of which 12 were detected with gravitational microlensing. Most of these are gravitationally bound to their host stars. There is some evidence of free-floating planetary-mass objects in young star-forming regions, but these objects are limited to massive objects of 3 to 15 Jupiter masses with large uncertainties in photometric mass estimates and their abundance. Here, we report the discovery of a population of unbound or distant Jupiter-mass objects, which are almost twice () as common as main-sequence stars, based on two years of gravitational microlensing survey observations towards the Galactic Bulge. These planetary-mass objects have no host stars that can be detected within about ten astronomical units by gravitational microlensing. However, a comparison with constraints from direct imaging suggests that most of these planetary-mass objects are not bound to any host star. An abrupt change in the mass function at about one Jupiter mass favours the idea that their formation process is different from that of stars and brown dwarfs. They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits.


The Astrophysical Journal | 2004

OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event

I. A. Bond; A. Udalski; M. Jaroszyński; N. J. Rattenbury; Bohdan Paczynski; I. Soszyński; L. Wyrzykowski; M. K. Szymański; M. Kubiak; O. Szewczyk; K. Żebruń; G. Pietrzyński; F. Abe; D. P. Bennett; S. Eguchi; Y. Furuta; J. B. Hearnshaw; K. Kamiya; P. M. Kilmartin; Y. Kurata; K. Masuda; Y. Matsubara; Y. Muraki; S. Noda; T. Sako; T. Sekiguchi; D. J. Sullivan; T. Sumi; P. J. Tristram; T. Yanagisawa

We present observations of the unusual microlensing event OGLE 2003-BLG-235/MOA 2003-BLG-53. In this event, a short-duration (~7 days) low-amplitude deviation in the light curve due to a single-lens profile was observed in both the MOA (Microlensing Observations in Astrophysics) and OGLE (Optical Gravitational Lensing Experiment) survey observations. We find that the observed features of the light curve can only be reproduced using a binary microlensing model with an extreme (planetary) mass ratio of 0.0039 for the lensing system. If the lens system comprises a main-sequence primary, we infer that the secondary is a planet of about 1.5 Jupiter masses with an orbital radius of ~3 AU.


The Astrophysical Journal | 2010

Quantifying Quasar Variability as Part of a General Approach to Classifying Continuously Varying Sources

S. Kozłowski; Christopher S. Kochanek; A. Udalski; Ł. Wyrzykowski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; O. Szewczyk; K. Ulaczyk; R. Poleski

Robust fast methods to classify variable light curves in large sky surveys are becoming increasingly important. While it is relatively straightforward to identify common periodic stars and particular transient events (supernovae, novae, microlensing events), there is no equivalent for non-periodic continuously varying sources (quasars, aperiodic stellar variability). In this paper, we present a fast method for modeling and classifying such sources. We demonstrate the method using ~86, 000 variable sources from the OGLE-II survey of the LMC and ~2700 mid-IR-selected quasar candidates from the OGLE-III survey of the LMC and SMC. We discuss the location of common variability classes in the parameter space of the model. In particular, we show that quasars occupy a distinct region of variability space, providing a simple quantitative approach to the variability selection of quasars.


The Astrophysical Journal | 2008

A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

D. P. Bennett; I. A. Bond; A. Udalski; T. Sumi; F. Abe; A. Fukui; K. Furusawa; J. B. Hearnshaw; S. Holderness; Y. Itow; K. Kamiya; A. Korpela; P. M. Kilmartin; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; N. Miyake; Y. Muraki; M. Nagaya; Teppei Okumura; K. Ohnishi; Y. C. Perrott; N. J. Rattenbury; T. Sako; To. Saito; Shuji Sato; L. Skuljan; D. J. Sullivan; W. L. Sweatman

We report the detection of an extrasolar planet of mass ratio q~2×10-4 in microlensing event MOA-2007-BLG-192. The best-fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M=0.060+0.028-0.021 Msolar for the primary and m=3.3+4.9-1.6 M? for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2 ? limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a substellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.


Astronomy and Astrophysics | 2011

V1309 Scorpii: merger of a contact binary ,

R. Tylenda; M. Hajduk; T. Kamiński; A. Udalski; I. Soszyński; M. K. Szymański; M. Kubiak; G. Pietrzyński; R. Poleski; Ł. Wyrzykowski; K. Ulaczyk

Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V 1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims. Our aim is to investigate the nature of V 1309 Sco. Methods. V 1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results. We find that the progenitor of V 1309 Sco was a contact binary with an orbital period of ∼1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V 1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions. For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type.


The Astrophysical Journal | 2009

MICROLENSING EVENT MOA-2007-BLG-400: EXHUMING THE BURIED SIGNATURE OF A COOL, JOVIAN-MASS PLANET

Subo Dong; I. A. Bond; A. Gould; S. Kozłowski; N. Miyake; B. S. Gaudi; D. P. Bennett; F. Abe; A. C. Gilmore; A. Fukui; K. Furusawa; J. B. Hearnshaw; Y. Itow; K. Kamiya; P. M. Kilmartin; A. Korpela; W. Lin; C. H. Ling; K. Masuda; Y. Matsubara; Y. Muraki; M. Nagaya; K. Ohnishi; Teppei Okumura; Y. C. Perrott; N. J. Rattenbury; To. Saito; T. Sako; Shuji Sato; L. Skuljan

We report the detection of the cool, Jovian-mass planet MOA-2007-BLG-400Lb. The planet was detected in a high-magnification microlensing event (with peak magnification A max = 628) in which the primary lens transited the source, resulting in a dramatic smoothing of the peak of the event. The angular extent of the region of perturbation due to the planet is significantly smaller than the angular size of the source, and as a result the planetary signature is also smoothed out by the finite source size. Thus, the deviation from a single-lens fit is broad and relatively weak (approximately few percent). Nevertheless, we demonstrate that the planetary nature of the deviation can be unambiguously ascertained from the gross features of the residuals, and detailed analysis yields a fairly precise planet/star mass ratio of , in accord with the large significance () of the detection. The planet/star projected separation is subject to a strong close/wide degeneracy, leading to two indistinguishable solutions that differ in separation by a factor of ~8.5. Upper limits on flux from the lens constrain its mass to be M < 0.75 M ? (assuming that it is a main-sequence star). A Bayesian analysis that includes all available observational constraints indicates a primary in the Galactic bulge with a mass of ~0.2-0.5 M ? and thus a planet mass of ~0.5-1.3 M Jup. The separation and equilibrium temperature are ~5.3-9.7 AU (~0.6-1.1 AU) and ~34 K (~103 K) for the wide (close) solution. If the primary is a main-sequence star, follow-up observations would enable the detection of its light and so a measurement of its mass and distance.


Astronomy and Astrophysics | 2011

Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique I. The p-factor, the Milky Way relations, and a universal K-band relation

Jesper Storm; W. Gieren; P. Fouqué; Thomas G. Barnes; G. Pietrzyński; N. Nardetto; Matthias M. Weber; Thomas Granzer; Klaus G. Strassmeier

Aims. We determine period-luminosity relations for Milky Way Cepheids in the optical and near-IR bands. These relations can be used directly as reference for extra-galactic distance determination to Cepheid populations with solar metallicity, and they form the basis for a direct comparison with relations obtained in exactly the same manner for stars in the Magellanic Clouds, presented in an accompanying paper. In that paper we show that the metallicity effect is very small and consistent with a null effect, particularly in the near-IR bands, and we combine here all 111 Cepheids from the Milky Way, the LMC and SMC to form a best relation. Methods. We employ the near-IR surface brightness (IRSB) method to determine direct distances to the individual Cepheids after we have recalibrated the projection factor using the recent parallax measurements to ten Galactic Cepheids and the constraint that Cepheid distances to the LMC should be independent of pulsation period. Results. We confirm our earlier finding that the projection factor for converting radial velocity to pulsational velocity depends quite steeply on pulsation period, p = 1.550− 0.186 log(P) in disagrement with recent theoretical predictions. We find PL relations based on 70 Milky Way fundamental mode Cepheids of MK = −3.33(±0.09)(log(P) − 1.0) − 5.66(±0.03), WVI = −3.26(±0.11)(log(P) − 1.0) − 5.96(±0.04). Combining the 70 Cepheids presented here with the results for 41 Magellanic Cloud Cepheids which are presented in an accompanying paper, we find MK = −3.30(±0.06)(log(P) − 1.0) − 5.65(±0.02), WVI = −3.32(±0.08)(log(P) − 1.0) − 5.92(±0.03). Conclusions. We delineate the Cepheid PL relation using 111 Cepheids with direct distances from the IRSB analysis. The relations are by construction in agreement with the recent HST parallax distances to Cepheids and slopes are in excellent agreement with the slopes of apparent magnitudes versus period observed in the LMC.


The Astrophysical Journal | 2006

Planetary detection efficiency of the magnification 3000 microlensing event OGLE-2004-BLG-343

Subo Dong; D. L. DePoy; B. S. Gaudi; A. Gould; C. Han; B.-G. Park; Richard W. Pogge; A. Udalski; O. Szewczyk; M. Kubiak; M. K. Szymański; G. Pietrzyński; I. Soszyński; Ł. Wyrzykowski; K. Żebruń

OGLE-2004-BLG-343 was a microlensing event with peak magnification Amax = 3000 ± 1100, by far the highest magnification event ever analyzed and hence potentially extremely sensitive to planets orbiting the lens star. Due to human error, intensive monitoring did not begin until 43 minutes after peak, at which point the magnification had fallen to A ~ 1200, still by far the highest ever observed. As the light curve does not show significant deviations due to a planet, we place upper limits on the presence of such planets by extending the method of Yoo et al. (2004b), which combines light-curve analysis with priors from a Galactic model of the source and lens populations, to take account of finite-source effects. This is the first event so analyzed for which finite-source effects are important, and hence we develop two new techniques for evaluating these effects. Somewhat surprisingly, we find that OGLE-2004-BLG-343 is no more sensitive to planets than two previously analyzed events with Amax ~ 100, despite the fact that it was observed at ~12 times higher magnification. However, we show that had the event been observed over its peak, it would have been sensitive to almost all Neptune-mass planets over a factor of 5 of projected separation and even would have had some sensitivity to Earth-mass planets. This shows that some microlensing events being detected in current experiments are sensitive to very low mass planets. We also give suggestions on how extremely high magnification events can be more promptly monitored in the future.


The Astrophysical Journal | 2000

The Optical Gravitational Lensing Experiment Monitoring of QSO 2237+0305*

P. R. Woźniak; C. Alard; A. Udalski; M. K. Szymański; M. Kubiak; G. Pietrzyński; K. Zebrun

We present results from 2 yr of monitoring of Huchras lens (QSO 2237+0305) with the 1.3 m Warsaw telescope on Las Campanas, Chile. Photometry in the V band was done using a newly developed method for image subtraction. Reliable subtraction without Fourier division removes all complexities associated with the presence of a bright lensing galaxy. With the positions of the lensed images adopted from Hubble Space Telescope (HST) measurements, it is relatively easy to fit the variable part of the flux in this system, as opposed to modeling the underlying galaxy. For the first time, we observed smooth light variation over a period of a few months, which can be naturally attributed to microlensing. We also describe automated software capable of real-time analysis of the images of QSO 2237+0305. It is expected that starting from the next observing season in 1999, an alert system will be implemented for high-amplification events in this object. The time sampling and photometric accuracy achieved should be sufficient for early detection of caustic crossings.


The Astrophysical Journal | 2000

Combined Analysis of the Binary Lens Caustic-crossing Event MACHO 98-SMC-1

C. Afonso; C. Alard; J. N. Albert; J. Andersen; R. Ansari; E. Aubourg; P. Bareyre; F. Bauer; J. P. Beaulieu; A. Bouquet; S. Char; X. Charlot; F. Couchot; C. Coutures; F. Derue; R. Ferlet; J. F. Glicenstein; A. Gould; David S. Graff; M. Gros; J. Haissinski; J. C. Hamilton; D. Hardin; J. de Kat; A. Kim; T. Lasserre; E. Lesquoy; C. Loup; C. Magneville; J.-B. Marquette

We fit the data for the binary lens microlensing event MACHO 98-SMC-1 from five different microlensing collaborations and find two distinct solutions characterized by binary separation d and mass ratio q: (d,q) = (0.54,0.50) and (d,q) = (3.65,0.36), where d is in units of the Einstein radius. However, the relative proper motion of the lens is very similar in the two solutions, 1.30 km s-1 kpc-1 and 1.48 km s-1 kpc-1, thus confirming that the lens is in the Small Magellanic Cloud. The close binary can be either rotating or approximately static but the wide binary must be rotating at close to its maximum allowed rate to be consistent with all the data. We measure limb-darkening coefficients for five bands ranging from I to V. As expected, these progressively decrease with rising wavelength. This is the first measurement of limb darkening for a metal-poor A star.

Collaboration


Dive into the G. Pietrzyński's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge