G Piras
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G Piras.
European Journal of Neuroscience | 2003
Osvaldo Giorgi; Daniele Lecca; G Piras; Peter Driscoll; Maria Giuseppa Corda
The mesocortical and mesolimbic dopaminergic (DAergic) pathways are activated by either aversive or rewarding stimuli. The functional tone of these DAergic neurons also increases during the execution of cognitive tasks. The present study was designed to examine the relationship between mesocortical and mesolimbic DAergic function and the expression of fear‐related behaviours as compared with attention‐ and cognition‐related mechanisms (e.g. coping strategies), in response to aversive conditions. To this aim, we used two psychogenetically selected rat lines, Roman high‐avoidance (RHA/Verh) and Roman low‐avoidance (RLA/Verh), which display drastically different emotion‐ and coping‐related behaviours in response to stressors: RLA/Verh rats are ‘reactive copers’ and more fearful than RHA/Verh rats, which are ‘proactive copers’. Brain dialysis experiments demonstrated that tail‐pinch (TP) and the anxiogenic compounds pentylenetetrazol (PTZ) and ZK 93426 increased DA output in the medial prefrontal cortex (PFCX) of RHA/Verh but not RLA/Verh, rats. In contrast, in the shell compartment of the nucleus accumbens (NAC shell), TP caused a small increase in DA output only in RLA/Verh rats, whereas PTZ and ZK 93426 had no significant effect on either line. RHA/Verh rats displayed more robust and longer lasting coping activity and less frequent freezing and self‐grooming episodes than did RLA/Verh rats after TP, PTZ or ZK 93426. This dissociation between fear‐related behaviour and cortical DAergic activation argues against the view that the latter may be involved in the control of fear‐like responses. We therefore propose that the activation of mesocortical DAergic projections by aversive stimuli underlies the cognitive mechanisms that are triggered in an attempt to gain control over the stressor.
Neuroscience & Biobehavioral Reviews | 2007
Osvaldo Giorgi; G Piras; Maria Giuseppa Corda
The Roman high- (RHA) and low-avoidance (RLA) rat lines were selected for, respectively, rapid vs poor acquisition of two-way active avoidance in the shuttle-box. Here, we review experimental evidence indicating that, compared with their RLA counterparts, RHA rats display a robust sensation/novelty seeking profile, a marked preference and intake of natural or drug rewards, and more pronounced behavioral and neurochemical responses to the acute administration of morphine and psychostimulants. Moreover, we show that (i) the repeated administration of morphine and cocaine elicits behavioral sensitization in RHA, but not RLA, rats, (ii) in sensitized RHA rats, acute morphine and cocaine cause a larger increment in dopamine output in the core, and an attenuated dopaminergic response in the shell of the nucleus accumbens, as compared with RHA rats repeatedly treated with saline, and (iii) such neurochemical changes are not observed in the mesoaccumbens dopaminergic system of the sensitization-resistant RLA line. Behavioral sensitization plays a key role in several cardinal features of addiction, including drug craving, compulsive drug seeking and propensity to relapse following detoxification. Comparative studies in the Roman lines may therefore represent a valid approach to evaluate the contribution of the genotype on the neural substrates of drug sensitization and addiction.
Neuropsychopharmacology | 2009
L Fattore; G Piras; Maria Giuseppa Corda; Osvaldo Giorgi
The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats for, respectively, rapid vs extremely poor acquisition of avoidant behavior in a shuttlebox has produced two phenotypes that differ in temperament traits, in mesocortical/mesolimbic dopamine system function, and in the behavioral and neurochemical responses to the acute and repeated administration of psychostimulants and opiates. The phenotypic traits of the RHA line predict higher susceptibility, compared with RLA rats, to the reinforcing properties of addictive substances like cocaine. The present study was designed to compare the acquisition, maintenance, reinstatement of drug-seeking after long-term extinction, and reacquisition of intravenous cocaine self-administration (SA) behavior in the Roman lines. Compared with RLA rats, the rates of responding during cocaine SA acquisition were higher, extinction from cocaine SA was prolonged, and drug-induced reinstatement of cocaine-seeking behavior was more robust in RHA rats. Moreover, only RHA rats reacquired extinguished lever-pressing activity when a low reinforcing dose of cocaine was available. These findings are consistent with the view that subjects with genetically determined high responsiveness to the acute and chronic (ie, sensitizing) effects of psychostimulants, such as RHA rats, also display a higher propensity to self -administer cocaine. Further comparative studies in the Roman lines, using SA paradigms that distinguish mere drug-taking from the compulsive and uncontrolled drug use that characterizes addiction in humans, may eventually help to characterize the relationships among genotype, temperament traits, and neurobiological mechanisms involved in the individual vulnerability to cocaine addiction.
Neuropharmacology | 2004
Daniele Lecca; G Piras; Peter Driscoll; Osvaldo Giorgi; Maria Giuseppa Corda
Addictive substances like morphine and psychostimulants induce a preferential increase in dopamine (DA) output in the nucleus accumbens (NAC), a major terminal field of the mesolimbic dopaminergic projection. Two subregions of the NAC, the dorsolateral core and the ventromedial shell, are thought to subserve different functions related to the reinforcing properties of natural and drug rewards. The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats, respectively, for rapid vs. extremely poor active avoidance acquisition in a shuttle-box has resulted in two phenotypes that differ in their behavioural and neurochemical responses to addictive drugs. We used brain dialysis to assess whether such differences in the responsiveness to drugs of abuse are related to differences in mesolimbic DA neuron function. In RHA rats, morphine, cocaine, and amphetamine caused a larger increase in DA efflux in the NAC shell vs. the NAC core, whereas the profile for the drug-induced increases in DA output was almost completely superimposable in the NAC shell and NAC core of RLA rats. Moreover, morphine, cocaine, and amphetamine caused a larger increment in basal DA output in the NAC shell of RHA rats vs. the NAC shell of RLA rats. These drugs also elicited a more robust increase in locomotion, rearing, sniffing, and grooming in RHA than in RLA rats. These results demonstrate that genetically determined differences in the functional properties of DA neurons projecting to the NAC shell may critically influence the behavioural response patterns to addictive drugs that distinguish the Roman lines.
Antiviral Chemistry & Chemotherapy | 1993
Marino Artico; Silvio Massa; Antonello Mai; Me Marongiu; G Piras; Enzo Tramontano; P. La Colla
A series of novel 3,4-dihydro-6-benzyl-4-oxopyrimidines substituted at both the C-5 and the C-2 positions were synthesized as potential anti-HIV agents. Preparation of the title compounds was achieved by condensation of O-methylisourea with methyl 2-alkyl-4-phenylacetylacetate and subsequent displacement of the methoxy group by reaction with a series of linear, ramified and cyclic alkoxy groups containing from three to six carbon units. Methyl 2-alkyl-4-phenylacetylacetates were prepared by alkylation of methyl 4-phenylacetylacetate, which was obtained starting from Meldrums acid and phenacetyl chloride. Acid hydrolysis of 3,4-dihydro-6-benzyl-2-methoxy-4-oxopyrimidines furnished the corresponding 1,2,3,4-tetrahydro-6-benzyl-2,4-dioxopyrimidines. In acutely infected MT-4 cells, compounds 3e, 3o, 3q and 3r showed an anti-HIV-1 activity as potent and/or selective as HEPT and ddl. Unlike HEPT, the replacement of a methyl for an hydrogen atom at position C-5 of 3,4-dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs) did not abolish the antiviral activity, as well as the substitution of the C-5 methyl for an ethyl group did not increase the potency. However, similarly to HEPT and its derivatives, DABOs targeted the HIV-1 reverse transcriptase and neither inhibited the multiplication of HIV-2 in acutely infected MT-4 cells, nor that of HIV-1 in chronically infected H9/IIIB cells.
Behavior Genetics | 1997
Maria Giuseppa Corda; Daniele Lecca; G Piras; Gaetano Di Chiara; Osvaldo Giorgi
The dopaminergic (DAergic) and GABAergic pathways in the central nervous system (CNS) are involved in the control of emotions, in the reactivity to stressful stimuli, and in the positive and negative reinforcing properties of psychotropic drugs. In the present review, we summarize the differences in a range of neurochemical markers of GABA- and DA-mediated neurotransmission in the CNS of Roman high-avoidance (RHA/Verh) and Roman low-avoidance (RLA/Verh) rats, two psychogenetically selected lines that differ in what may be considered to be level of emotionality. The stimulatory effect of GABA on 36Cl− uptake was less pronounced in the cerebral cortex of RLA/Verh rats compared to RHA/Verh rats. In addition, the binding affinity of [35S]TBPS, a selective ligand of the convulsant site located in the chloride channel of GABAA receptors, was significantly lower in the hippocampus of RLA/Verh rats than in their high-avoidance counterparts. On the other hand, the density of D1 DA receptors labeled with [3H]SCH 23390 was lower in the nucleus accumbens of RLA/Verh rats compared to RHA/Verh rats. Brain microdialysis studies demonstrated that tail-pinch stress and subconvulsant doses of the anxiogenic compound pentylenetetrazol increased the extracellular concentrations of DA in the prefrontal cortex of hypoemotive RHA/Verh rats but not in their hyperemotive RLA/Verh counterparts. These line-dependent differences in GABAergic and DAergic neurotransmission may contribute to the distinct emotionality and responsiveness to centrally active drugs of RHA/Verh and RLA/Verh rats.
Neuroscience | 2005
Osvaldo Giorgi; G Piras; Daniele Lecca; Maria Giuseppa Corda
The selectively bred Roman high- and low-avoidance rats differ in emotionality and responsiveness to the motor effects of acute and repeated psychostimulant administration. These lines also show drastic differences in the neurochemical responses of their mesolimbic dopamine systems to addictive drugs. The nucleus accumbens is critically involved in the locomotor activation produced by psychostimulants and in the augmentation of this effect observed upon repeated drug administration (i.e. behavioral sensitization), although there is not a general consensus as to whether the nucleus accumbens-core or the nucleus accumbens-shell is preferentially involved in such alterations. This study was designed to evaluate the effects of acute amphetamine (0.20 mg/kg, s.c.) on dopamine output in the nucleus accumbens-shell and nucleus accumbens-core of the Roman lines under basal conditions (i.e. naïve rats) and after the repeated administration of amphetamine (1 mg/kg, s.c. x 10 days) or saline. We show that (1) in naïve rats, amphetamine caused a larger increment in dopamine output in the nucleus accumbens-shell vs the nucleus accumbens-core only in the Roman high-avoidance line; (2) repeated amphetamine elicits behavioral sensitization in Roman high-avoidance, but not Roman low-avoidance, rats; (3) in sensitized Roman high-avoidance rats, amphetamine provokes a larger increment in dopamine output in the nucleus accumbens-core, and an attenuated dopaminergic response in the nucleus accumbens-shell, as compared with Roman high-avoidance rats repeatedly treated with saline; and (4) such neurochemical changes are not observed in the mesoaccumbens dopaminergic system of the sensitization-resistant Roman low-avoidance line. We propose that (1) Roman high-avoidance and Roman low-avoidance rats differ in the vulnerability to develop psychostimulant sensitization, (2) the nucleus accumbens-core and nucleus accumbens-shell subserve distinct functional roles in this phenomenon, and (3) comparative studies in the Roman lines may provide insight into the influence of neural substrates and genetic background on the individual vulnerability to addiction.
Behavioural Brain Research | 2005
Maria Giuseppa Corda; G Piras; Daniele Lecca; Alberto Fernández-Teruel; Peter Driscoll; Osvaldo Giorgi
The mesolimbic dopamine system is considered to play a pivotal role in the locomotor activation produced by psychostimulants and in the augmentation of this effect observed upon repeated drug administration, a process denominated behavioral sensitization. The selective breeding of Roman high- (RHA) and low-avoidance (RLA) rats, respectively, for rapid versus poor active avoidance acquisition has resulted in two phenotypes that differ in the functional properties of the mesolimbic dopamine system and in their behavioral and neurochemical responses to addictive drugs, including psychostimulants and opiates. Hence, the present study was designed to compare the ability of these lines to develop behavioral sensitization to psychostimulants. To this aim, the acute effects of amphetamine (0.125 or 0.25 mg/kg, s.c.) on locomotion were assessed in RHA and RLA rats prior to and subsequent to 10 daily doses of either amphetamine (1 mg/kg, s.c.) or saline (1 ml/kg, s.c.). In the RHA line, the locomotor activation produced by either challenge dose of amphetamine was more pronounced in rats that had been repeatedly treated with amphetamine versus the respective saline treated controls. In contrast, no significant change in locomotor activity was observed in RLA rats. Likewise, repeated amphetamine caused an increased frequency of sniffing, rearing, licking/gnawing, and grooming versus the control, repeated saline, group only in the RHA line. The results show that the repeated treatment regimen used in this study induced behavioral sensitization to amphetamine in RHA rats, but not in their RLA counterparts, and underscore the utility of these lines for studying the influence of neural substrates and genetic make up on the individual vulnerability to addiction.
Psychopharmacology | 2010
G Piras; Osvaldo Giorgi; Maria Giuseppa Corda
IntroductionThe selective breeding of Roman low-avoidance (RLA) and high-avoidance (RHA) rats for, respectively, poor versus rapid acquisition of active avoidance in a shuttle-box has produced two phenotypes that differ drastically in the reactivity to stressful stimuli: in tests used to assess emotionality, RLA rats display passive (“reactive”) coping and robust hypothalamus–pituitary–adrenal (HPA) axis reactivity, whereas RHA rats show proactive coping and blunted HPA axis responses. The behavioral and neuroendocrine traits that distinguish these lines suggest that RLA rats may be prone, whereas RHA rats may be resistant to develop depression-like behavior when exposed to stressful experimental conditions.Objective and methodsTo evaluate the performance of the Roman lines in the forced swim test, immobility, climbing, and swimming were assessed under baseline conditions (i.e., pretest in naïve animals or test after the administration of vehicle), and after subacute treatment with desipramine, fluoxetine, and chlorimipramine.ResultsUnder baseline conditions, RLA rats displayed greater immobility and fewer climbing counts than RHA rats. In RLA rats, desipramine, fluoxetine, and chlorimipramine decreased immobility; moreover, desipramine and chlorimipramine increased climbing, whereas fluoxetine increased swimming. In RHA rats, none of these drugs affected immobility, swimming, or climbing.ConclusionsRLA and RHA rats represent two divergent phenotypes respectively susceptible and resistant to display depression-like behavior in the forced swim test. Hence, comparative studies in these lines may help to develop novel working hypotheses on the relationships among genotype, temperament traits, and neural mechanisms underlying the vulnerability or resistance to stress-induced depression in humans.
Journal of Neurochemistry | 2004
Osvaldo Giorgi; G Piras; Daniele Lecca; S. Hansson; Peter Driscoll; Maria Giuseppa Corda
The selective breeding of Roman high‐ (RHA/Verh) and low‐avoidance (RLA/Verh) rats for rapid versus poor acquisition of active avoidant behaviour has produced two behavioural phenotypes with different performances in a variety of animal models of anxiety, in which RLA/Verh rats are consistently more fearful than RHA/Verh rats. In addition, these two lines display different functional properties of brain neurotransmitters like serotonin (5‐HT), known to be involved in the expression of anxiety‐ and depression‐related behaviours. Therefore, we used brain microdialysis and [3H]‐citalopram binding autoradiography to characterize further the neurochemical properties of 5‐HTergic transmission in the two lines. No significant line‐related differences were detected in the basal 5‐HT output in the frontoparietal cortex (FPCx). In contrast, the increase in the cortical 5‐HT output elicited by the systemic administration or the local application, via reverse dialysis, of chlorimipramine and fluoxetine was more robust in RHA/Verh than in RLA/Verh rats. Moreover, the binding signal of [3H]‐citalopram to 5‐HT re‐uptake sites was more intense in the FPCx of RHA/Verh rats than in their RLA/Verh counterparts. These findings suggest that the functional tone of the 5‐HTergic projection to the FPCx is stronger in the RHA/Verh line relative to the RLA/Verh line. It is proposed that RLA/Verh rats may be used as a model with heuristic value for studying the role of 5‐HTergic transmission in anxiety and in the anxiolytic effects of monoamine re‐uptake inhibitors.