G. Platania
Istituto Nazionale di Fisica Nucleare
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Platania.
International Journal of Theoretical Physics | 1983
R. de Ritis; G. Marmo; G. Platania; Paolo Scudellaro
We show how the ambiguity of Lagrangian and Hamiltonian descriptions for conservative systems gives rise to an analogous ambiguity for dissipative systems. For a subclass of them we also give a Lagrangian description.
Physics Letters A | 1991
R. de Ritis; G. Platania; C. Rubano; R. Sabatino
Abstract We have extended the FRW scalar field cosmology including matter. We have discussed exact solutions for potentials like V(ϕ)=0 and (only in presence of dust) V(ϕ)=αeηϕ+e-ηϕ.
Physics Letters A | 1990
R. de Ritis; G. Marmo; G. Platania; C. Rubano; Paolo Scudellaro; Cosimo Stornaiolo
Abstract The cosmological equations of a gravitational field, minimally coupled witha scalar field, are exactly integrated, provided that the potential of the scalar field belongs to a special class of exponentials. A particular solution is given, exhibiting the damping of the effective cosmological constant and a power-law inflation.
Physics Letters A | 1986
Marek Demianski; R. de Ritis; G. Platania; Paolo Scudellaro; Cosimo Stornaiolo
Abstract We have extended the Guth inflationary model of the universe to the Einstein-Cartan theory of gravitation. In this model the initial singularity is avoided; moreover, the minimal radius of the universe is influenced by the fals vacuum energy.
General Relativity and Gravitation | 1990
R. de Ritis; G. Platania; Paolo Scudellaro; Cosimo Stornaiolo
Analyzing the Klein-Gordon equation in a homogeneous, Isotropic and spatially flat universe model, we find the conditions for the existence of a universe dominated by a scalar field in its early stages.
Physics Letters A | 1983
R. de Ritis; M. Lavorgna; G. Platania; Cosimo Stornaiolo
Abstract In this paper we extend to the case of spin fluids in the Einstein-Cartan theory some results obtained by Taub and Lichnerowicz for a perfect fluid in general relativity. So doing we also give an extension of the Bernoulli theorem. We show a connection between torsion and a macroscopical quantity, the tensor Ω ij =2∇[ j V i ] .
Il Nuovo Cimento B | 1983
R. de Ritis; D. M. Pisello; G. Platania; Paolo Scudellaro
SummaryWe construct the kinetic potentials that appear on the generalized Clebsch representation for the velocity field of a perfect fluid with a politropic state equation that describes the matter distribution in a Newtonian homogeneous isotropic universe. We also specify the constants of motion with respect to the HS group.RiassuntoSi costituiscono i potenziali cinetici che appaiono nella rappresentazione generalizzata di Clebsch per il campo di velocità di un fluido perfetto descrivente la distribuzione di materia nel caso di un universo newtoniano omogeneo ed isotropo. Sempre in questo caso si specificano, inoltre, le costanti del moto relative al gruppo di Heckmann-Shucking.РезюмеМы конструируем кинетические потенциалы, которые появляются в обобщенном представлении Клебша для поля скоростей идеальной жидкости с политропным уравнением состояния, которое описывает распределение вещества в ньютоновой однородной изотропной вселенной. Мы определяем постоянные движения относительно HS группы.
Physical Review D | 1990
R. de Ritis; Giuseppe Marmo; G. Platania; C. Rubano; Paolo Scudellaro; Cosimo Stornaiolo
Physical Review D | 1991
Marek Demianski; R. de Ritis; Giuseppe Marmo; G. Platania; C. Rubano; Paolo Scudellaro; Cosimo Stornaiolo
Physical Review D | 1983
R. de Ritis; M. Lavorgna; G. Platania; Cosimo Stornaiolo