G. Quintana-Lacaci
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Quintana-Lacaci.
Astronomy and Astrophysics | 2010
C. Kramer; C. Buchbender; E. M. Xilouris; M. Boquien; J. Braine; Daniela Calzetti; S. Lord; B. Mookerjea; G. Quintana-Lacaci; M. Relaño; G. J. Stacey; F. S. Tabatabaei; S. Verley; Susanne Aalto; S. Akras; Marcus W. Albrecht; S. Anderl; R. Beck; Frank Bertoldi; Francoise Combes; M. Dumke; S. Garcia-Burillo; M. Gonzalez; P. Gratier; R. Güsten; C. Henkel; F. P. Israel; B. Koribalski; Andreas A. Lundgren; J. Martin-Pintado
Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 mu m wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 mu m and 500 mu m using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 mu m). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K +/- 10 K. The temperature of the cold component drops significantly from similar to 24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
Astronomy and Astrophysics | 2010
A. Castro-Carrizo; G. Quintana-Lacaci; R. Neri; V. Bujarrabal; Fredrik L. Schöier; J.M. Winters; Hans Olofsson; Michael Lindqvist; J. Alcolea; R. Lucas; M. Grewing
We present COSAS (CO Survey of late AGB Stars), a project to map and analyze the 12CO J = 1−0 and J = 2−1 line emission in a representative sample of circumstellar envelopes around AGB and post-AGB stars. The survey was undertaken with the aim of investigating small- and large-scale morphological and kinematical properties of the molecular environment surrounding stars in the late AGB and early post-AGB phases. For this, COSAS combines the high sensitivity and spatial resolving power of the IRAM Plateau de Bure interferometer with the better capability of the IRAM 30 m telescope to map extended emission. The global sample encompasses 45 stars selected to span a range in chemical type, variability type, evolutionary state, and initial mass. COSAS provides means to quantify variations in the mass-loss rates, assess morphological and kinematical features, and to investigate the appearance of fast aspherical winds in the early post-AGB phase. This paper, which is the first of a series of COSAS papers, presents the results from the analyses of a first sample of 16 selected sources. The envelopes around late AGB stars are found to be mostly spherical, often mingled with features such as concentric arcs (R Cas and TX Cam), a broken spiral density pattern (TX Cam), molecular patches testifying to aspherical mass-loss (WX Psc, IK Tau, V Cyg, and S Cep), and also with well-defined axisymmetric morphologies and kinematical patterns (X Her and RX Boo). The sources span a wide range of angular sizes, from relatively compact (CRL 2362, OH 104.9+2.4 and CRL 2477) to very large (χ Cyg and TX Cam) envelopes, sometimes partially obscured by self-absorption features, which particularly for IK Tau and χ Cyg testifies to the emergence of aspherical winds in the innermost circumstellar regions. Strong axial structures with more or less complex morphologies are detected in four early post-AGB stars (IRAS 20028+3910, IRAS 23321+6545, IRAS 19475+3119 and IRAS 21282+5050) of the sub-sample.
Astronomy and Astrophysics | 2013
Bindu Rani; T. P. Krichbaum; L. Fuhrmann; Markus Böttcher; B. Lott; Hugh D. Aller; Margo F. Aller; E. Angelakis; U. Bach; D. Bastieri; A. Falcone; Yasushi Fukazawa; K. E. Gabanyi; Alok C. Gupta; M. A. Gurwell; R. Itoh; Koji S. Kawabata; M. Krips; A. Lähteenmäki; Xiao-Lan Liu; N. Marchili; W. Max-Moerbeck; I. Nestoras; E. Nieppola; G. Quintana-Lacaci; Anthony C. S. Readhead; J. L. Richards; Mahito Sasada; A. Sievers; K. V. Sokolovsky
We present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ∼350 days. Episodes of fast variability recur on time scales of ∼60−70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field Beq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. The optical/GeV flux variations lead the radio variability by ∼65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.
Astronomy and Astrophysics | 2007
A. Castro-Carrizo; G. Quintana-Lacaci; V. Bujarrabal; R. Neri; J. Alcolea
IRC +10420 and AFGL 2343 are the unique, known yellow hypergiants (YHGs) presenting a heavy circumstellar envelope (CSE). We aim to study the morphology, exceptional kinematics, and excitation conditions of their CSEs, and the implications for mass-loss processes. We have mapped the 12CO J=2-1 and 1-0 emission in these YHGs with the IRAM Plateau de Bure interferometer and the 30m telescope. We developed LVG models in order to analyze their circumstellar characteristics. The maps show that the overall shape of both CSEs is approximately spherical, although they also reveal several aspherical features. The CSE around IRC +10420 shows a rounded extended halo surrounding a bright inner region, with both components presenting aspherical characteristics. It presents a brightness minimum at the center. The envelope around AFGL 2343 is a detached shell, showing spherical symmetry and clumpiness at a level of about 15% of the maximum brightness. The envelopes expand isotropically at about 35 km/s, about two or three times faster than typical CSEs around AGB stars. High temperatures (~ 200 K) are derived for the innermost regions in IRC +10420, while denser and cooler (~ 30 K) gas is found in AFGL 2343. The mass-loss processes in these YHGs have been found to be similar. The deduced mass-loss rates (~ 10E-4 - 10E-3 Msun/yr) are much higher than those obtained in AGB stars, and they present significant variations on time scales of ~ 1000 yr.
Astronomy and Astrophysics | 2012
Francoise Combes; M. Boquien; C. Kramer; E. M. Xilouris; Frank Bertoldi; J. Braine; C. Buchbender; Daniela Calzetti; P. Gratier; F. P. Israel; B. Koribalski; S. Lord; G. Quintana-Lacaci; M. Relaño; M. Röllig; G. J. Stacey; F. S. Tabatabaei; R. P. J. Tilanus; F. F. S. van der Tak; P. van der Werf; S. Verley
Power spectra of deprojected images of late-type galaxies in gas or dust emission are very useful diagnostics of the dynamics and stability of their interstellar medium. Previous studies have shown that the power spectra can be approximated as two power laws, a shallow one on large scales (larger than 500 pc) and a steeper one on small scales, with the break between the two corresponding to the line-of-sight thickness of the galaxy disk. The break separates the 3D behavior of the interstellar medium on small scales, controlled by star formation and feedback, from the 2D behavior on large scales, driven by density waves in the disk. The break between these two regimes depends on the thickness of the plane, which is determined by the natural self-gravitating scale of the interstellar medium. We present a thorough analysis of the power spectra of the dust and gas emission at several wavelengths in the nearby galaxy M 33. In particular, we use the recently obtained images at five wavelengths by PACS and SPIRE onboard Herschel. The wide dynamical range (2–3 dex in scale) of most images allows us to clearly determine the change in slopes from −1.5 to −4, with some variations with wavelength. The break scale increases with wavelength from 100 pc at 24 and 100 μm to 350 pc at 500 μm, suggesting that the cool dust lies in a thicker disk than the warm dust, perhaps because of star formation that is more confined to the plane. The slope on small scales tends to be steeper at longer wavelength, meaning that the warmer dust is more concentrated in clumps. Numerical simulations of an isolated late-type galaxy, rich in gas and with no bulge, such as M 33, are carried out to better interpret these observed results. Varying the star formation and feedback parameters, it is possible to obtain a range of power spectra, with two power-law slopes and breaks, that nicelybracket the data. The small-scale power-law does indeed reflect the 3D behavior of the gas layer, steepening strongly while the feedback smoothes the structures by increasing the gas turbulence. M 33 appears to correspond to a fiducial model with an SFR of ~ 0.7 M_⊙/yr, with 10% supernovae energy coupled to the gas kinematics.
Astronomy and Astrophysics | 2012
E. M. Xilouris; F. S. Tabatabaei; M. Boquien; C. Kramer; C. Buchbender; Frank Bertoldi; S. Anderl; J. Braine; S. Verley; M. Relaño; G. Quintana-Lacaci; S. Akras; R. Beck; Daniela Calzetti; Francoise Combes; M. Gonzalez; P. Gratier; C. Henkel; F. P. Israel; B. S. Koribalski; S. Lord; B. Mookerjea; Erik Rosolowsky; G. J. Stacey; R. P. J. Tilanus; F. F. S. van der Tak; P. van der Werf
In the framework of the open-time key program “Herschel M 33 extended survey (HerM33es)”, we study the far-infrared emission from the nearby spiral galaxy M 33 in order to investigate the physical properties of the dust such as its temperature and luminosity density across the galaxy. Taking advantage of the unique wavelength coverage (100, 160, 250, 350, and 500 μm) of the Herschel Space Observatory and complementing our dataset with Spitzer-IRAC 5.8 and 8 μm and Spitzer-MIPS 24 and 70 μm data, we construct temperature and luminosity density maps by fitting two modified blackbodies of a fixed emissivity index of 1.5. We find that the “cool” dust grains are heated to temperatures of between 11 K and 28 K, with the lowest temperatures being found in the outskirts of the galaxy and the highest ones both at the center and in the bright HII regions. The infrared/submillimeter total luminosity (5–1000 μm) is estimated to be 1.9 × 10^9 _(-4.4×10)^8^(+4.0×10)^8L_⊙. Fifty-nine percent of the total infrared/submillimeter luminosity of the galaxy is produced by the “cool” dust grains (~15 K), while the remaining 41% is produced by “warm” dust grains (~55 K). The ratio of the cool-to-warm dust luminosity is close to unity (within the computed uncertainties), throughout the galaxy, with the luminosity of the cool dust being slightly higher at the center than the outer parts of the galaxy. Decomposing the emission of the dust into two components (one emitted by the diffuse disk of the galaxy and one emitted by the spiral arms), we find that the fraction of the emission from the disk in the mid-infrared (24 μm) is 21%, while it gradually rises up to 57% in the submillimeter (500 μm). We find that the bulk of the luminosity comes from the spiral arm network that produces 70% of the total luminosity of the galaxy with the rest coming from the diffuse dust disk. The “cool” dust inside the disk is heated to temperatures in a narrow range between 18 K and 15 K (going from the center to the outer parts of the galaxy).
Astronomy and Astrophysics | 2010
Jonathan Braine; P. Gratier; C. Kramer; E. M. Xilouris; E. Rosolowsky; C. Buchbender; M. Boquien; Daniela Calzetti; G. Quintana-Lacaci; F. S. Tabatabaei; S. Verley; F. P. Israel; F. F. S. van der Tak; Susanne Aalto; F. Combes; S. Garcia-Burillo; M. Gonzalez; C. Henkel; B. S. Koribalski; B. Mookerjea; M. Roellig; K. Schuster; M. Relaño; Frank Bertoldi; P. van der Werf; Martina C. Wiedner
We present an analysis of the first space-based far-IR-submm observations of M33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H-2 content. In this Letter, we measure the dust emission cross-section sigma using SPIRE and recent CO and HI observations; a variation in s is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the HI column, yields a morphology similar to that observed in CO. The H-2/HI mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M33.
Astronomy and Astrophysics | 2010
S. Verley; M. Relaño; C. Kramer; E. M. Xilouris; M. Boquien; D. Calzetti; F. Combes; C. Buchbender; J. Braine; G. Quintana-Lacaci; F. S. Tabatabaei; S. Lord; F. P. Israel; G. J. Stacey; P. van der Werf
Aims. Within the framework of the HERM33ES key program, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission sources. We extracted a catalogue of sources at 250 μm in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Hα shells in the northern part of the galaxy. Methods. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250 μm SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24 μm and Hα for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Hα, far-ultraviolet from GALEX, and infrared from both Spitzer IRAC 8 μm and MIPS 24 μm in order to make comparisons. Results. For the 159 compact sources selected at 250 μm, we find a very strong Pearson correlation coefficient with the MIPS 24 μm emission (r_(24) = 0.94) and a rather strong correlation with the Hα emission, although with more scatter (r_(Hα) = 0.83). The morphological study of the Hα shells shows a displacement between far-ultraviolet, Hα, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Hα shell structures. Conclusions. The very strong link between the 250 μm compact emission and the 24 μm and Hα emissions, by recovering the star formation rate from standard recipes for H II regions, allows us to provide star formation rate calibrations based on the 250 μm compact emission alone. The different locations of the Hα and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Hα shells and the associated cool dust.
The Astrophysical Journal | 2014
J. Cernicharo; D. Teyssier; G. Quintana-Lacaci; F. Daniel; M. Agúndez; L. Velilla-Prieto; Leen Decin; M. Guelin; P. Encrenaz; Pedro Garcia-Lario; Elvire De Beck; M. J. Barlow; M. A. T. Groenewegen; David A. Neufeld; J. C. Pearson
We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species towards the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the HIFI instrument on board Herschel and with the IRAM 30-m telescope. They cover several observing periods spreading over 3 years. The line intensity variations for molecules produced in the external layers of the envelope most probably result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations have to take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The sub-mm and FIR lines of AGB stars cannot anymore be considered as safe intensity calibrators.
The Astrophysical Journal | 2015
J. Cernicharo; M. C. McCarthy; C. A. Gottlieb; M. Agúndez; L. Velilla Prieto; Joshua H. Baraban; P. B. Changala; M. Guelin; C. Kahane; M. A. Martin Drumel; Nimesh A. Patel; Neil J. Reilly; John F. Stanton; G. Quintana-Lacaci; Sven Thorwirth; K. Young
We report the discovery in space of a disilicon species, SiCSi, from observations between 80 and 350 GHz with the IRAM 30m radio telescope. Owing to the close coordination between laboratory experiments and astrophysics, 112 lines have now been detected in the carbon-rich star CW Leo. The derived frequencies yield improved rotational and centrifugal distortion constants up to sixth order. From the line profiles and interferometric maps with the Submillimeter Array, the bulk of the SiCSi emission arises from a region of 6″ in radius. The derived abundance is comparable to that of SiC2. As expected from chemical equilibrium calculations, SiCSi and SiC2 are the most abundant species harboring a Si-C bond in the dust formation zone and certainly both play a key role in the formation of SiC dust grains.