Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. R. Davies is active.

Publication


Featured researches published by G. R. Davies.


Astronomy and Astrophysics | 2014

Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

S. Deheuvels; G. Doğan; M. J. Goupil; T. Appourchaux; O. Benomar; H. Bruntt; T. L. Campante; Luca Casagrande; T. Ceillier; G. R. Davies; P. De Cat; J. N. Fu; R. A. García; A. Lobel; B. Mosser; Daniel Reese; C. Regulo; Jesper Schou; T. Stahn; A. O. Thygesen; X. H. Yang; W. J. Chaplin; J. Christensen-Dalsgaard; P. Eggenberger; Laurent Gizon; S. Mathis; J. Molenda-Żakowicz; Marc H. Pinsonneault

Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question.Aims. Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts.Methods. We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars.Results. We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand.Conclusions. We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches.


Monthly Notices of the Royal Astronomical Society | 2015

Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology

Silva Aguirre; G. R. Davies; Sarbani Basu; J. Christensen-Dalsgaard; O. L. Creevey; T. S. Metcalfe; Timothy R. Bedding; Luca Casagrande; R. Handberg; Mikkel N. Lund; Poul Nissen; W. J. Chaplin; D. Huber; Aldo M. Serenelli; D. Stello; V. Van Eylen; T. L. Campante; Y. Elsworth; R. L. Gilliland; S. Hekker; C. Karoff; Steven D. Kawaler; Hans Kjeldsen; M. Lundkvist

We present a study of 33 {\it Kepler} planet-candidate host stars for which asteroseismic observations have sufficiently high signal-to-noise ratio to allow extraction of individual pulsation frequencies. We implement a new Bayesian scheme that is flexible in its input to process individual oscillation frequencies, combinations of them, and average asteroseismic parameters, and derive robust fundamental properties for these targets. Applying this scheme to grids of evolutionary models yields stellar properties with median statistical uncertainties of 1.2\% (radius), 1.7\% (density), 3.3\% (mass), 4.4\% (distance), and 14\% (age), making this the exoplanet host-star sample with the most precise and uniformly determined fundamental parameters to date. We assess the systematics from changes in the solar abundances and mixing-length parameter, showing that they are smaller than the statistical errors. We also determine the stellar properties with three other fitting algorithms and explore the systematics arising from using different evolution and pulsation codes, resulting in 1\% in density and radius, and 2\% and 7\% in mass and age, respectively. We confirm previous findings of the initial helium abundance being a source of systematics comparable to our statistical uncertainties, and discuss future prospects for constraining this parameter by combining asteroseismology and data from space missions. Finally we compare our derived properties with those obtained using the global average asteroseismic observables along with effective temperature and metallicity, finding an excellent level of agreement. Owing to selection effects, our results show that the majority of the high signal-to-noise ratio asteroseismic {\it Kepler} host stars are older than the Sun.


The Astrophysical Journal | 2013

Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65

W. J. Chaplin; Roberto Sanchis-Ojeda; T. L. Campante; R. Handberg; D. Stello; Joshua N. Winn; Sarbani Basu; J. Christensen-Dalsgaard; G. R. Davies; T. S. Metcalfe; Lars A. Buchhave; Debra A. Fischer; Timothy R. Bedding; William D. Cochran; Y. Elsworth; R. L. Gilliland; S. Hekker; Daniel Huber; Howard Isaacson; C. Karoff; Steven D. Kawaler; Hans Kjeldsen; D. W. Latham; Mikkel N. Lund; M. Lundkvist; Geoffrey W. Marcy; A. Miglio; Jack J. Lissauer

Results on the obliquity of exoplanet host stars?the angle between the stellar spin axis and the planetary orbital axis?provide important diagnostic information for theories describing planetary formation. Here we present the first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the angles constrained at the 1? level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation axis are correlated.


Astronomy and Astrophysics | 2014

Rotation and magnetism of Kepler pulsating solar-like stars - Towards asteroseismically calibrated age-rotation relations

R. A. García; T. Ceillier; D. Salabert; S. Mathur; J. van Saders; Marc H. Pinsonneault; J. Ballot; P. G. Beck; S. Bloemen; T. L. Campante; G. R. Davies; J. D. do Nascimento; Stéphane Mathis; T. S. Metcalfe; M. B. Nielsen; J. C. Suárez; W. J. Chaplin; A. Jiménez; C. Karoff

Kepler ultra-high precision photometry of long and continuous observations provides a unique dataset in which surface rotation and variability can be studied for thousands of stars. Because many of these old field stars also have independently measured asteroseismic ages, measurements of rotation and activity are particularly interesting in the context of age-rotation-activity relations. In particular, age-rotation relations generally lack good calibrators at old ages, a problem that this Kepler sample of old-field stars is uniquely suited to address. We study the surface rotation and photometric magnetic activity of a subset of 540 solar-like stars on the main-sequence and the subgiant branch for which stellar pulsations have been measured. The rotation period was determined by comparing the results from two different analysis methods: i) the projection onto the frequency domain of the time-period analysis, and ii) the autocorrelation function of the light curves. Reliable surface rotation rates were then extracted by comparing the results from two different sets of calibrated data and from the two complementary analyses. General photometric levels of magnetic activity in this sample of stars were also extracted by using a photometric activity index, which takes into account the rotation period of the stars. We report rotation periods for 310 out of 540 targets (excluding known binaries and candidate planet-host stars); our measurements span a range of 1 to 100 days. The photometric magnetic activity levels of these stars were computed, and for 61.5% of the dwarfs, this level is similar to the range, from minimum to maximum, of the solar magnetic activity. We demonstrate that hot dwarfs, cool dwarfs, and subgiants have very different rotation-age relationships, highlighting the importance of separating out distinct populations when interpreting stellar rotation periods. Our sample of cool dwarf stars with age and metallicity data of the highest quality is consistent with gyrochronology relations reported in the literature.


The Astrophysical Journal | 2015

An Ancient Extrasolar System with Five Sub-Earth-size Planets

T. L. Campante; Jonathan J. Swift; D. Huber; V. Zh-H. Adibekyan; William D. Cochran; Christopher J. Burke; Howard Isaacson; Elisa V. Quintana; G. R. Davies; V. Silva Aguirre; Darin Ragozzine; Reed Riddle; Christoph Baranec; Sarbani Basu; W. J. Chaplin; J. Christensen-Dalsgaard; T. S. Metcalfe; Timothy R. Bedding; R. Handberg; D. Stello; John M. Brewer; S. Hekker; C. Karoff; Rea Kolbl; Nicholas M. Law; M. Lundkvist; A. Miglio; Jason F. Rowe; N. C. Santos; C. Van Laerhoven

The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universes history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universes 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.


Nature | 2016

Weakened magnetic braking as the origin of anomalously rapid rotation in old field stars

Jennifer L. van Saders; T. Ceillier; T. S. Metcalfe; Victor Silva Aguirre; Marc H. Pinsonneault; R. A. García; S. Mathur; G. R. Davies

A knowledge of stellar ages is crucial for our understanding of many astrophysical phenomena, and yet ages can be difficult to determine. As they become older, stars lose mass and angular momentum, resulting in an observed slowdown in surface rotation. The technique of ‘gyrochronology’ uses the rotation period of a star to calculate its age. However, stars of known age must be used for calibration, and, until recently, the approach was untested for old stars (older than 1 gigayear, Gyr). Rotation periods are now known for stars in an open cluster of intermediate age (NGC 6819; 2.5 Gyr old), and for old field stars whose ages have been determined with asteroseismology. The data for the cluster agree with previous period–age relations, but these relations fail to describe the asteroseismic sample. Here we report stellar evolutionary modelling, and confirm the presence of unexpectedly rapid rotation in stars that are more evolved than the Sun. We demonstrate that models that incorporate dramatically weakened magnetic braking for old stars can—unlike existing models—reproduce both the asteroseismic and the cluster data. Our findings might suggest a fundamental change in the nature of ageing stellar dynamos, with the Sun being close to the critical transition to much weaker magnetized winds. This weakened braking limits the diagnostic power of gyrochronology for those stars that are more than halfway through their main-sequence lifetimes.


Monthly Notices of the Royal Astronomical Society | 2014

Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler

A. P. Doyle; G. R. Davies; B. Smalley; W. J. Chaplin; Y. Elsworth

The Rossiter-McLaughlin effect observed for transiting exoplanets often requires prior knowledge of the stellar projected equatorial rotational velocity (v sini). This is usually provided by measuring the broadening of spectral lines, however this method has uncertainties as lines are also broadened by velocity fields in the stellar photosphere known as macroturbulence (vmac). We have estimated accurate v sini values from asteroseismic analyses of main sequence stars observed by Kepler. The rotational frequency splittings of the detected solar-like oscillations of these stars are determined largely by the near-surface rotation. These estimates have been used to infer the vmac values for 28 Kepler stars. Out of this sample, 26 stars were used along with the Sun to obtain a new calibration between vmac, effective temperature and surface gravity. The new calibration is valid for the temperature range 5200 to 6400 K and the gravity range 4.0 to 4.6 dex. A comparison is also provided with previous vmac calibrations. As a result of this work, vmac, and thus v sini, can now be determined with confidence for stars that do not have asteroseismic data available. We present new spectroscopic v sini values for the WASP planet host stars, using high resolution HARPS spectra.


Astrophysical Journal Supplement Series | 2014

PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL

T. S. Metcalfe; O. L. Creevey; G. Doğan; S. Mathur; H. Xu; Timothy R. Bedding; W. J. Chaplin; J. Christensen-Dalsgaard; C. Karoff; Regner Trampedach; O. Benomar; Benjamin P. Brown; Derek L. Buzasi; T. L. Campante; Z. Çelik; M. S. Cunha; G. R. Davies; S. Deheuvels; A. Derekas; M. Di Mauro; R. A. García; Joyce Ann Guzik; R. Howe; Keith B. MacGregor; A. Mazumdar; J. Montalbán; M. J. P. F. G. Monteiro; D. Salabert; Aldo M. Serenelli; D. Stello

Recently the number of main-sequence and subgiant stars exhibiting solar-like oscillations that are resolved into individual mode frequencies has increased dramatically. While only a few such data sets were available for detailed modeling just a decade ago, the Kepler mission has produced suitable observations for hundreds of new targets. This rapid expansion in observational capacity has been accompanied by a shift in analysis and modeling strategies to yield uniform sets of derived stellar properties more quickly and easily. We use previously published asteroseismic and spectroscopic data sets to provide a uniform analysis of 42 solar-type Kepler targets from the Asteroseismic Modeling Portal. We find that fitting the individual frequencies typically doubles the precision of the asteroseismic radius, mass, and age compared to grid-based modeling of the global oscillation properties, and improves the precision of the radius and mass by about a factor of three over empirical scaling relations. We demonstrate the utility of the derived properties with several applications.


Astronomy and Astrophysics | 2014

Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry : A sample study and the analysis of KIC 5006817

P. G. Beck; K. Hambleton; J. Vos; T. Kallinger; S. Bloemen; A. Tkachenko; R. A. García; Roy Ostensen; Conny Aerts; D. W. Kurtz; J. De Ridder; S. Hekker; K. Pavlovski; S. Mathur; K. De Smedt; A. Derekas; E. Corsaro; B. Mosser; H. Van Winckel; Daniel Huber; P. Degroote; G. R. Davies; Andrej Prsa; J. Debosscher; Y. Elsworth; P. Nemeth; Lionel Siess; V. S. Schmid; P. I. Pápics; B. L. de Vries

Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e= 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29± 0.03 M . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e = 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29 ± 0.03 M� . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.


The Astrophysical Journal | 2013

Kepler-63b: A Giant Planet in a Polar Orbit around a Young Sun-like Star

Roberto Sanchis-Ojeda; Joshua N. Winn; Geoffrey W. Marcy; Andrew W. Howard; Howard Isaacson; John Asher Johnson; Guillermo Torres; Simon Albrecht; T. L. Campante; W. J. Chaplin; G. R. Davies; Mikkel N. Lund; Joshua A. Carter; Rebekah I. Dawson; Lars A. Buchhave; Mark E. Everett; Debra A. Fischer; John C. Geary; Ronald L. Gilliland; Elliott P. Horch; Steve Bruce Howell; David W. Latham

We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m_(Kp) = 11.6, T_(eff) = 5576 K, M_★ = 0.98 M_☉). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planets radius is 6.1 ± 0.2 R_⊕, based on the transit light curve and the estimated stellar parameters. The planets mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M_⊕ (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

Collaboration


Dive into the G. R. Davies's collaboration.

Top Co-Authors

Avatar

W. J. Chaplin

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Y. Elsworth

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

T. L. Campante

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Miglio

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

R. A. García

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge