Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Rasul Chaudhry is active.

Publication


Featured researches published by G. Rasul Chaudhry.


Critical Reviews in Biotechnology | 1992

Microbiological and Biotechnological Aspects of Metabolism of Carbamates and Organophosphates

Satya Chapalamadugu; G. Rasul Chaudhry

Several carbamate and organophosphate compounds are used to control a wide variety of insect pests, weeds, and disease-transmitting vectors. These chemicals were introduced to replace the recalcitrant and hazardous chlorinated pesticides. Although newly introduced pesticides were considered to be biodegradable, some of them are highly toxic and their residues are found in certain environments. In addition, degradation of some of the carbamates generates metabolites that are also toxic. In general, hydrolysis of the carbamate and organophosphates yields less toxic metabolites compared with the metabolites produced from oxidation. Although microorganisms capable of degrading many of these pesticides have been isolated, knowledge about the biochemical pathways and respective genes involved in the degradation is sparse. Recently, a great deal of interest in the mechanisms of biodegradation of carbamate and organophosphate compounds has been shown because (1) an efficient mineralization of the pesticides used for insect control could eliminate the problems of environmental pollution, (2) a balance between degradation and efficacy of pesticides could result in safer application and effective insect control, and (3) knowledge about the mechanisms of biodegradation could help to deal with situations leading to the generation of toxic metabolites and bioremediation of polluted environments. In addition, advances in genetic engineering and biotechnology offer great potential to exploit the degradative properties of microorganisms in order to develop bioremediation strategies and novel applications such as development of economic plants tolerant to herbicides. In this review, recent advances in the biochemical and genetic aspects of microbial degradation of carbamate and organophosphates are discussed and areas in need of further investigation identified.


Journal of Neurosurgery | 2009

In vivo intervertebral disc regeneration using stem cell-derived chondroprogenitors

Hormoz Sheikh; Karen Zakharian; Ramiro Perez De La Torre; Adrian Vasquez; G. Rasul Chaudhry; David Svinarich; Mick J. Perez-Cruet

OBJECT There is currently no biologic therapy to repair or restore a degenerated intervertebral disc. A potential solution may rest with embryonic stem cells (ESCs), which have a potential to grow indefinitely and differentiate into a variety of cell types in vitro. Prior studies have shown that ESCs can be encouraged to differentiate toward specific cell lineages by culture in selective media and specific growth environment. Among these lineages, there are cells capable of potentially producing nucleus pulposus (NP) in vivo. In this investigation, the authors studied ESCderived chondroprogenitors implanted into a degenerated disc in a rabbit. For this purpose, a rabbit model of disc degeneration was developed. METHODS A percutaneous animal model of disc degeneration was developed by needle puncture of healthy intact discs in 16 New Zealand white rabbits. Series of spine MR imaging studies were obtained before disc puncture and after 2, 6, and 8 weeks. Prior to implantation, murine ESCs were cultured with cis-retinoic acid, transforming growth factor beta, ascorbic acid, and insulin-like growth factor to induce differentiation toward a chondrocyte lineage. After confirmation by MR imaging, degenerated disc levels were injected with chondrogenic derivatives of ESCs expressing green fluorescent protein. At 8 weeks post-ESC implantation, the animals were killed and the intervertebral discs were harvested and analyzed using H & E staining, confocal fluorescent microscopy, and immunohistochemical analysis. Three intervertebral disc groups were analyzed in 16 rabbits, as follows: 1) Group A, control: naïve, nonpunctured discs (32 discs, levels L4-5 and L5-6); 2) Group B, experimental control: punctured disc (16 discs, level L2-3); and 3) Group C, experimental: punctured disc followed by implantation of chondroprogenitor cells (16 discs, level L3-4). RESULTS The MR imaging studies confirmed intervertebral disc degeneration at needle-punctured segments starting at approximately 2 weeks. Postmortem H & E histological analysis of Group A discs showed mature chondrocytes and no notochordal cells. Group B discs displayed an intact anulus fibrosus and generalized disorganization within fibrous tissue of NP. Group C discs showed islands of notochordal cell growth. Immunofluorescent staining for notochordal cells was negative for Groups A and B but revealed viable notochordal-type cells within experimental Group C discs, which had been implanted with ESC derivatives. Notably, no inflammatory response was noted in Group C discs. CONCLUSIONS This study illustrates a reproducible percutaneous model for studying disc degeneration. New notochordal cell populations were seen in degenerated discs injected with ESCs. The lack of immune response to a xenograft of mouse cells in an immunocompetent rabbit model may suggest an as yet unrecognized immunoprivileged site within the intervertebral disc space.


Stem Cells and Development | 2009

Fate of Embryonic Stem Cell Derivatives Implanted into the Vitreous of a Slow Retinal Degenerative Mouse Model

G. Rasul Chaudhry; Christopher Fecek; Michael M. Lai; Wei-Chi Wu; Mei Chang; Adrian Vasquez; Magda Pasierb; Michael T. Trese

Stem cell therapy may be used potentially to treat retinal degeneration and restore vision. Since embryonic stem cells (ESCs) can differentiate into almost any cell types, including those found in the eye, they can be transplanted to repair or replace damaged or injured retinal tissue resulting from inherited diseases or traumas. In this investigation, we explored the potential of ESCs and ESC-derived neuroprogenitors to proliferate and integrate into the diseased retinal tissue of rd12 mice. These rd12 mice mimic the slow and progressive retinal degeneration seen in humans. Both ESCs and ESC-derived neuroprogenitors from ESCs survived and proliferated as evidenced from an increase in yellow fluorescent protein fluorescence. Quantification analysis of cryosectioned retinal tissue initially revealed that both ESCs and neuroprogenitors differentiated into cells expressing neural markers. However, ESC proliferation was robust and resulted in the disruption of the retinal structure and the eventual formation of teratomas beyond 6 weeks postimplantation. In contrast, the neuroprogenitors proliferated slowly, but differentiated further and integrated into the retinal layers of the eye. The differentiation of neuroprogenitors represented various retinal cell types, as judged from the expression of cell-specific markers including Nestin, Olig1, and glial fibrillary acidic protein. These results suggest that ESC-derived neuroprogenitors can survive, proliferate, and differentiate when implanted into the eyes of experimental mice and may be used potentially as cell therapy for treating degenerated or damaged retinal tissue.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2004

Self-Transmissible Antibiotic Resistance to Ampicillin, Streptomycin, and Tetracyclin Found in Escherichia coli Isolates from Contaminated Drinking Water

Satish Walia; Alan Kaiser; Mohinder Parkash; G. Rasul Chaudhry

Abstract Presence and survival of cultivable bacteria in drinking water can act as a vehicle to disseminate virulence genes (adherence, enterotoxigenic and antibiotic resistance) to other bacteria. This can result in high morbidity and mortality, and the failure of the treatment of life threatening bacterial infections in humans and animals. In this study, antibiotic resistance (ABR) patterns and transferability of the ABR markers was investigated in Escherichia coli isolates obtained from drinking water and human urine samples. The ABR in E. coli isolates was determined against 15 antibiotics commonly used in human and veterinary medicine. A high frequency of ABR to carbenicillin (56%), tetracycline (53%) and streptomycin (49%) and a low frequency of cefizoxime (5%), amikacin (8%), cefazidine, (5%), chloramphenicol (9%), and kanamycin (18%) was found in the tested E. coli isolates. ABR to kanamycin (0% vs. 35%) and moxalactam (4% vs. 30%) was higher in drinking water isolates whereas resistance to streptomycin (92% vs. 15 %), ampicillin (24% vs. 10%), and nalidixic acid (12% vs. 0%) was higher in human urine isolates. A large number of E. coli isolates (93%) exhibited resistance to two or more antibiotics. Two of E. coli isolates from drinking water showed resistances to six (Cb Cm Cx Ip Mx Tc and An Cb Km Mx Sm Tc) and one was resistant to seven antibiotics (Am An Cb Km Mx Sm Tc). A majority of the multiple antibiotic resistant E. coli isolates contained one or more plasmids (size ranged ˜1.4 Kb to ˜40 Kb). The ABR traits (Am and Tc) were transferable to other bacteria via conjugation. These data raise an important question about the impact of E. coli containing self-transmissible R-plasmids as a potential reservoir of virulence genes in drinking water.


Biotechnology and Applied Biochemistry | 2002

Purification and biochemical characterization of the carbamate hydrolase from Pseudomonas sp. 50432

G. Rasul Chaudhry; A. Mateen; B. Kaskar; M. Bloda; Sheikh Riazuddin

A soluble carbamate hydrolase that had a wide specificity was purified 2032‐fold from Pseudomonas sp. 50432. This was achieved using a combination of anion‐exchange, gel‐filtration and hydrophobic‐interaction‐ chromatography techniques. Carbamate hydrolase cleaved the ester linkage of the N‐methylcarbamates. The native enzyme was a monomer with a molecular mass of 88 kDa. The optimum pH and temperature of the enzyme activity were 8.5 and 37 °C respectively. The tested cations or EDTA did not affect the enzyme activity. However, 2‐mercaptoethanol reversibly inhibited the enzyme activity. The enzyme showed the Km values of 16 and 12 μM for carbofuran and carbaryl respectively. The purified enzyme did not hydrolyse o‐nitrophenyl dimethylcarbamate but hydrolysed several N‐methylcarbamates and 1‐naphthyl acetate.


Colloids and Surfaces B: Biointerfaces | 2017

Advances and challenges in stem cell culture

Christina McKee; G. Rasul Chaudhry

Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.


World Journal of Stem Cells | 2015

Simplified three-dimensional culture system for long-term expansion of embryonic stem cells

Christina McKee; Mick J. Perez-Cruet; Ferman Chavez; G. Rasul Chaudhry

AIM To devise a simplified and efficient method for long-term culture and maintenance of embryonic stem cells requiring less frequent passaging. METHODS Mouse embryonic stem cells (ESCs) labeled with enhanced yellow fluorescent protein were cultured in three-dimensional (3-D) self-assembling scaffolds and compared with traditional two-dimentional (2-D) culture techniques requiring mouse embryonic fibroblast feeder layers or leukemia inhibitory factor. 3-D scaffolds encapsulating ESCs were prepared by mixing ESCs with polyethylene glycol tetra-acrylate (PEG-4-Acr) and thiol-functionalized dextran (Dex-SH). Distribution of ESCs in 3-D was monitored by confocal microscopy. Viability and proliferation of encapsulated cells during long-term culture were determined by propidium iodide as well as direct cell counts and PrestoBlue (PB) assays. Genetic expression of pluripotency markers (Oct4, Nanog, Klf4, and Sox2) in ESCs grown under 2-D and 3-D culture conditions was examined by quantitative real-time polymerase chain reaction. Protein expression of selected stemness markers was determined by two different methods, immunofluorescence staining (Oct4 and Nanog) and western blot analysis (Oct4, Nanog, and Klf4). Pluripotency of 3-D scaffold grown ESCs was analyzed by in vivo teratoma assay and in vitro differentiation via embryoid bodies into cells of all three germ layers. RESULTS Self-assembling scaffolds encapsulating ESCs for 3-D culture without the loss of cell viability were prepared by mixing PEG-4-Acr and Dex-SH (1:1 v/v) to a final concentration of 5% (w/v). Scaffold integrity was dependent on the degree of thiol substitution of Dex-SH and cell concentration. Scaffolds prepared using Dex-SH with 7.5% and 33% thiol substitution and incubated in culture medium maintained their integrity for 11 and 13 d without cells and 22 ± 5 d and 37 ± 5 d with cells, respectively. ESCs formed compact colonies, which progressively increased in size over time due to cell proliferation as determined by confocal microscopy and PB staining. 3-D scaffold cultured ESCs expressed significantly higher levels (P < 0.01) of Oct4, Nanog, and Kl4, showing a 2.8, 3.0 and 1.8 fold increase, respectively, in comparison to 2-D grown cells. A similar increase in the protein expression levels of Oct4, Nanog, and Klf4 was observed in 3-D grown ESCs. However, when 3-D cultured ESCs were subsequently passaged in 2-D culture conditions, the level of these pluripotent markers was reduced to normal levels. 3-D grown ESCs produced teratomas and yielded cells of all three germ layers, expressing brachyury (mesoderm), NCAM (ectoderm), and GATA4 (endoderm) markers. Furthermore, these cells differentiated into osteogenic, chondrogenic, myogenic, and neural lineages expressing Col1, Col2, Myog, and Nestin, respectively. CONCLUSION This novel 3-D culture system demonstrated long-term maintenance of mouse ESCs without the routine passaging and manipulation necessary for traditional 2-D cell propagation.


Stem Cell Research & Therapy | 2016

BET protein inhibitor JQ1 inhibits growth and modulates WNT signaling in mesenchymal stem cells

Saeed Alghamdi; Irfan Ali Khan; Naimisha Beeravolu; Christina McKee; Bryan J. Thibodeau; George D. Wilson; G. Rasul Chaudhry

BackgroundEfficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. The thienodiazepine class of BET inhibitors, such as JQ1, has been extensively studied for the potential treatment of hematological malignancies and several small molecules belonging to this class are currently under clinical investigation. While these compounds are well known to inhibit cancer cell growth and cause apoptosis, their effects on stem cells, particularly mesenchymal stem cells (MSCs), which are important for regeneration of damaged cells and tissues, are unknown. In this study we employed umbilical cord derived MSCs as a model system to evaluate the safety of JQ1.MethodsCord derived MSCs were treated with various doses of JQ1 and subjected to cell metabolic activity, apoptosis, and cell cycle analyses using MTT assay, Annexin-V/FITC and PI staining, and flow cytometry, respectively. The effect of JQ1 on gene expression was determined using microarray and quantitative real-time reverse transcriptase polymerase chain reaction analysis. Furthermore, protein expression of apoptotic and neuronal markers was carried out using western blot and immunostaining, respectively.ResultsOur results showed that JQ1 inhibited cell growth and caused cell cycle arrest in G1 phase but did not induce apoptosis or senescence. JQ1 also down-regulated genes involved in self-renewal, cell cycle, DNA replication, and mitosis, which may have negative implications on the regenerative potential of MSCs. In addition, JQ1 interfered with signaling pathways by down regulating the expression of WNT, resulting in limiting the self-renewal. These results suggest that anticancer agents belonging to the thienodiazepine class of BET inhibitors should be carefully evaluated before their use in cancer therapy.ConclusionsThis study revealed for the first time that JQ1 adversely affected MSCs, which are important for repair and regeneration. JQ1 specifically modulated signal transduction and inhibited growth as well as self-renewal. These findings suggest that perinatal MSCs could be used to supplement animal models for investigating the safety of anticancer agents and other drugs.


Stem Cell Research | 2016

Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord.

Naimisha Beeravolu; Irfan Ali Khan; Christina McKee; Sumi Dinda; Bryan J. Thibodeau; George D. Wilson; Mick Perez-Cruet; Ray O. Bahado-Singh; G. Rasul Chaudhry

Human umbilical cord (hUC) blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs). While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored. We dissected the hUC into its discrete sites and isolated hUC cells from the cord placenta junction (CPJ), cord tissue (CT), and Whartons jelly (WJ). Isolated cells displayed fibroblastoid morphology, and expressed CD29, CD44, CD73, CD90, and CD105, and showed evidence of differentiation into multiple lineages in vitro. They also expressed low levels of pluripotency genes, OCT4, NANOG, SOX2 and KLF4. Passaging markedly affected cell proliferation with concomitant decreases in the expression of pluripotency and other markers, and an increase in chondrogenic markers. Microarray analysis further revealed the differences in the gene expression of CPJ-, CT- and WJ-hUC cells. Five coding and five lncRNA genes were differentially expressed in low vs. high passage hUC cells. Only MAEL was expressed at high levels in both low and high passage CPJ-hUC cells. They displayed a greater proliferation limit and a higher degree of multi-lineage differentiation in vitro and warrant further investigation to determine their full differentiation capacity, and therapeutic and regenerative medicine potential.


Tissue Engineering Part A | 2017

Compression induced chondrogenic differentiation of embryonic stem cells in 3-D PDMS scaffolds.

Christina McKee; Yifeng Hong; Donggang Yao; G. Rasul Chaudhry

Embryonic stem cells (ESCs) are an ideal source for chondrogenic progenitors for the repair of damaged cartilage tissue. It is currently difficult to induce uniform and scalable ESC differentiation in vitro, a process required for stem cell therapy. This is partly because stem cell fate is determined by complex interactions with the native microenvironment and mechanical properties of the extracellular matrix. Mechanical signaling is considered to be one of the major factors regulating the proliferation and differentiation of chondrogenic cells both in vitro and in vivo. We used biocompatible and elastic polydimethylsiloxane (PDMS) scaffolds, capable of transducing mechanical signals, including compressive stress in vitro. ESCs seeded into the PDMS scaffolds and subjected to mechanical loading resulted in induction of differentiation. Differentiated ESC derivatives in three-dimensional (3-D) PDMS scaffolds exhibited elongated single cell rather than round clonal ESC morphology. They expressed chondrogenic marker, Col2, with concomitant reduction in the expression of pluripotent marker, Oct4. Immunocytochemical analysis also showed that the expression of COL2 protein was significantly higher in ESCs in 3-D scaffolds subjected to compressive stress. Further analysis showed that compressive stress also resulted in expression of early chondrogenic makers, Sox9 and Acan, but not hypertrophic chondrogenic markers, Runx2, Col10, and Mmp13. Compressive stress induced differentiation caused a reduction in the expression of β-Catenin and an increase in the expression of genes, Rhoa, Yap, and Taz, which are known to be affected by mechanosignaling. The chondroinductive role of RhoA was confirmed by its downregulation with simultaneous decrease in the transcriptional and translational expression of early chondrogenic markers, SOX9, COL2, and ACAN, when ESCs in PDMS scaffolds were subjected to compressive stress and treated with RhoA inhibitor, CCG-1432. Based on these observations, a model for compression induced chondrogenic differentiation of ESCs in 3-D scaffolds was proposed.

Collaboration


Dive into the G. Rasul Chaudhry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donggang Yao

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mick J. Perez-Cruet

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Satish Walia

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge