G. Ritzenhöfer
University of Wuppertal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Ritzenhöfer.
Computer Physics Communications | 1996
S. Fischer; Andreas Frommer; U. Glässner; Th. Lippert; G. Ritzenhöfer; K. Schilling
Abstract We present a parallelizable SSOR preconditioning scheme for Krylov subspace iterative solvers which proves to be efficient in lattice QCD applications involving Wilson fermions. Our preconditioner is based on a locally lexicographic ordering of the lattice points. In actual Hybrid Monte Carlo applications with the bi-conjugate gradient stabilized method BiCGstab, we achieve a gain factor of about 2 in the number of iterations compared to conventional odd-even preconditioning. Whether this translates into similar reductions in run time will depend on the parallel computer in use. We discuss implementation issues using the ‘Eisenstat-trick’ and machine specific advantages of the method for the APE100/Quadrics parallel computer. In a full QCD simulation on a 512-processor Quadrics QH4 we find a gain in cpu-time of a factor of 1.7 over odd-even preconditioning for a 24 3 × 40 lattice.
Physical Review D | 1998
N. Eicker; P. Lacock; K. Schilling; A. Spitz; U. Glässner; S. Güsken; H. Hoeber; Th. Lippert; Th. Struckmann; P. Ueberholz; J. Viehoff; G. Ritzenhöfer
We present the final analysis of the light and strange hadron spectra from a full QCD lattice simulation with two degenerate dynamical sea quark flavors at
Physics Letters B | 1997
N. Eicker; U. Glässner; S. Güsken; H. Hoeber; P. Lacock; Th. Lippert; G. Ritzenhöfer; K. Schilling; G. Siegert; A. Spitz; P. Ueberholz; J. Viehoff
\ensuremath{\beta}=5.6
Physics Letters B | 1996
U. Glässner; S. Güsken; H. Hoeber; Th. Lippert; G. Ritzenhöfer; K. Schilling; G. Siegert; A. Spitz; A. Wachter
on a
Physics Letters B | 1996
N. Eicker; U. Glässner; S. Güsken; H. Hoeber; Thomas Lippert; G. Ritzenhöfer; K. Schilling; G. Siegert; A. Spitz; P. Ueberholz; J. Viehoff
{16}^{3}\ifmmode\times\else\texttimes\fi{}32
arXiv: High Energy Physics - Lattice | 1998
Th. Lippert; Gunnar S. Bali; N. Eicker; L. Giusti; U. Glässner; S. Güsken; H. Hoeber; P. Lacock; G. Martinelli; F. Rapuano; G. Ritzenhöfer; K. Schilling; G. Siegert; A. Spitz; P. Ueberholz; J. Viehoff
lattice. Four sets of sea quark masses corresponding to the range
International Journal of Modern Physics C | 1996
Thomas Lippert; G. Ritzenhöfer; Uwe Glaessner; H. Hoeber; Armin Seyfried; K. Schilling
0.69l~{m}_{\ensuremath{\pi}}{/m}_{\ensuremath{\rho}}l~0.83
International Journal of Modern Physics C | 1996
U. Glässner; S. Güsken; Thomas Lippert; G. Ritzenhöfer; K. Schilling; Andreas Frommer
are investigated. For reference we also ran a quenched simulation at
arXiv: High Energy Physics - Lattice | 1998
Th. Lippert; Gunnar S. Bali; N. Eicker; L. Giusti; U. Glässner; S. Güsken; H. Hoeber; G. Martinelli; F. Rapuano; G. Ritzenhöfer; K. Schilling; A. Spitz; J. Viehoff
{\ensuremath{\beta}}_{\mathrm{eff}}=6.0,
arXiv: High Energy Physics - Lattice | 1998
H. Hoeber; N. Eicker; U. Glässner; S. Güsken; P. Lacock; Th. Lippert; G. Ritzenhöfer; K. Schilling; A. Spitz; P. Ueberholz; J. Viehoff; L. Giusti; Guido Martinelli; F. Rapuano
which is the point of equal lattice spacing,