Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Rodríguez de Lores Arnaiz is active.

Publication


Featured researches published by G. Rodríguez de Lores Arnaiz.


Neurochemical Research | 1986

Partial characterization of an endogenous factor which modulates the effect of catecholamines on synaptosomal Na+, K+-ATPase

G. Rodríguez de Lores Arnaiz; M.Antonelli de Gómez de Lima

We have previously presented evidence for the existence of a brain soluble factor which mediates the stimulation of synaptosomal ATPases by catecholamines. The stimulation of synaptosomal ATPases by dopamine plus brain soluble fraction was not modified if the soluble fraction was heated for 5 min at 95°C. One day after preparation, the soluble factor inhibited the Na+, K+-ATPase, but not the Mg2+-ATPase activity, and subsequent addition of noradrenaline stimulated the ATPases activities. The inhibitory effect of a 24 h soluble fraction disappeared if the soluble fraction was dialyzed; in this case, noradrenaline did not activate the enzyme activities. Gel filtration in Sephadex G-50 permitted separating a subfraction which inhibited ATPase activity (peak II) from another which stimulated ATPase activity (peak I). Peak I stimulated both Na+, K+, and Mg2+ ATPases. Peak II inhibited only Na+, K+-ATPase, and when stored acidified, it mediated ATPases stimulation by noradrenaline.We have previously presented evidence for the existence of a brain soluble factor which mediates the stimulation of synaptosomal ATPases by catecholamines. The stimulation of synaptosomal ATPases by dopamine plus brain soluble fraction was not modified if the soluble fraction was heated for 5 min at 95°C. One day after preparation, the soluble factor inhibited the Na+, K+-ATPase, but not the Mg2+-ATPase activity, and subsequent addition of noradrenaline stimulated the ATPases activities. The inhibitory effect of a 24 h soluble fraction disappeared if the soluble fraction was dialyzed; in this case, noradrenaline did not activate the enzyme activities. Gel filtration in Sephadex G-50 permitted separating a subfraction which inhibited ATPase activity (peak II) from another which stimulated ATPase activity (peak I). Peak I stimulated both Na+, K+, and Mg2+ ATPases. Peak II inhibited only Na+, K+-ATPase, and when stored acidified, it mediated ATPases stimulation by noradrenaline.


Neurochemical Research | 1998

Regional vulnerability to oxidative stress in a model of experimental epilepsy

S. Lores Arnaiz; Marina Travacio; Susana Llesuy; G. Rodríguez de Lores Arnaiz

We evaluated oxidative stress associated with a model of experimental epilepsy. Male Wistar rats were injected i.p. with 150 mg/kg convulsant 3-mercaptopropionic acid and decapitated in two stages: during seizures or in the post-seizure period. Spontaneous chemiluminescence, levels of thiobarbituric acid reactive substances, total antioxidant capacity and antioxidant enzyme activities were measured in cerebellum, hippocampus, cerebral cortex and striatum. In animals killed at seizure, increases of 42% and 90% were observed in spontaneous chemiluminescence of cerebellum and cerebral cortex homogenates, respectively, accompanied by a 25% increase in cerebral cortex levels of thiobarbituric acid reactive substances. In the post-seizure stage, emission completely returned to control levels in cerebral cortex and partly in cerebellum, thus showing oxidative stress reversibility in time. Hippocampus and striatum seemed less vulnerable areas to oxidative damage. A 30% decrease in glutathione peroxidase activity was only observed in cerebral cortex during seizures, while catalase and superoxide dismutase remained unchanged in all four areas during either stage. Likewise, total antioxidant capacity was unaffected in any of the studied areas. It is suggested that oxidative stress in this model of epilepsy arises from an increase in oxidant species rather than from depletion of antioxidant defences.


Neurochemistry International | 1998

Na+,K+-ATPase interaction with a brain endogenous inhibitor (endobain E)

G. Rodríguez de Lores Arnaiz; Analía Reinés; T. Herbin; Clara Peña

Na+,K+-ATPase activity of rat brain synaptosomal membranes was evaluated in the presence of an inhibitory fraction II-E (termed endobain E), isolated by gel filtration and anionic exchange HPLC of a rat brain soluble fraction. We studied endobain E aging, analyzed its inhibitory potency in the absence or presence of ouabain as well as its ability to block high affinity [3H]ouabain binding to cerebral cortex membranes. Similar loss of endobain E activity was observed when samples were stored either dried or in solution. Endobain E fraction inhibited synaptosomal membrane Na+,K+-ATPase activity in a concentration-dependent manner and the slope of the corresponding curve strongly resembled that of ouabain. Assays performed in the presence of endobain E and ouabain indicated that the inhibitory effect was additive or less than additive, depending on their respective concentrations during preincubation and/or incubation. High affinity [3H]ouabain binding to cerebral cortex membranes proved concentration-dependent from 0.10 to 0.50 mg protein per ml; binding inhibition by endobain E was independent of protein concentration within the above range. [3H]ouabain binding inhibition by endobain E was concentration-dependent over a 10-fold range, an effect similar to that found for Na+,K+-ATPase inhibition. The extent of endobain E effect on Na+,K+-ATPase inhibition was much higher (90-100%) than that on [3H]ouabain binding blockade (50%). Findings suggest some type of interaction between endobain E and ouabain inhibitory mechanisms and favour the view that the former behaves as an endogenous ouabain.


Neurochemical Research | 2001

Seizure activity produces differential changes in adenosine A1 receptors within rat hippocampus.

Gabriela Vanore; Lisandro Giraldez; G. Rodríguez de Lores Arnaiz; Elena Girardi

Specific ligand binding to rat hippocampal adenosine A1 receptor after administration of the convulsant drug 3-mercaptopropionic acid (MP) was studied by means of a quantitative autoradiographic method. 2-Chloro-N6-[cyclopentyl-2,3,4,5-3H adenosine] ([3H]CCPA), a potent and selective A1 receptor ligand, was selected for binding studies. MP administration (150 mg/kg, i.p.), at seizure, caused significant increases in the following CA1 layers: pyramidal (45%), radiatum (18%) and lacunosum molecular (35%); in CA2 area, a significant decrease in stratum oriens (36%) and an increase in stratum radiatum (14%) and lacunosum molecular (33%) layers was observed. In CA3 area a rise in pyramidal (40%) and radiatum layers (26%), as well as in hillus (97%) was found. At postseizure, changes were restricted to CA1, CA2 and CA3 pyramidal layers and to CA1 lacunosum molecular layer, with increases ranging from 22 to 50%. These results show that [3H]CCPA binding is modified diversely in intrahippocampal layers and areas, thus indicating their dissimilar role in seizure activity.


Neurochemical Research | 1988

Different properties of two brain extracts separated in Sephadex G-50 that modify synaptosomal ATPase activities

G. Rodríguez de Lores Arnaiz; M. de Gómez de Lima Antonelli; Elena Girardi

We have previously reported that Na+,K+-ATPase of nerve ending membranes is stimulated by catecholamines only in the presence of a brain soluble fraction. The filtration of this soluble fraction through Sephadex G-50 permitted the separation of two extracts of maximal UV absorbance (peaks I and II) which showed different effects on ATPases. Peak I stimulated both Na+,K+-ATPase and Mg2+-ATPase activities and peak II inhibited Na+,K+-ATPase activity. We have now studied the activity of ATPases in the presence of the whole eluate obtained from the Sephadex G-50 column. It was observed that maximal effects on ATPases were obtained with peaks I and II. Peak I and peak II fractions were unable to modify the activity of acetylcholinesterase or 5′-nucleotidase present in the synaptosomal membranes. The stimulatory effect of peak I on ATPases was concentration dependent (up to 1∶100), it was stable at different pHs and it was reverted by catecholamines. The inhibitory effect of peak II on Na+,K+-ATPase was concentration dependent (up to 1∶50,000), it was stable only at acid pH, and it was partially reverted by catecholamines. These findings indicate that the factors responsible for the effects of peaks I and II have different properties and that their actions on ATPases show enzyme specifity.


Neurochemical Research | 2003

A Comparative Study Between a Brain Na+,K+-ATPase Inhibitor (Endobain E) and Ascorbic Acid

G. Rodríguez de Lores Arnaiz; T. Herbin; Clara Peña

In the search of Na+,K+-ATPase modulators, we have reported the isolation by gel filtration and HPLC of a brain fraction, termed endobain E, which highly inhibits Na+,K+-ATPase activity. In the present study we compared some properties of endobain E with those of ascorbic acid. Kinetic experiments assaying synaptosomal membrane K+-p-nitrophenylphosphatase (K+-p-NPPase) activity in the presence of endobain E or ascorbic acid showed that in neither case did enzyme inhibition prove competitive in nature versus K+ or p-NPP concentration. At pH 5.0, endobain E and ascorbic acid maximal UV absorbance was 266 and 258 nm, respectively; alkalinization to pH 14.0 led to absorption drop and shift for endobain E but to absorbance disappearance for ascorbic acid. After cysteine treatment, endobain E absorbance decreased, whereas that of ascorbic acid remained unaltered; iodine treatment led to absorbance drop and shift for endobain E but to absorbance disappearance for ascorbic acid. HPLC analysis of endobain E disclosed the presence of two components: one eluting with retention time and UV spectrum indistinguishable from those of ascorbic acid and a second, as yet unidentified, both exerting Na+,K+-ATPase inhibition.


Neurochemical Research | 1981

Tissue specificity of dopamine effects on brain ATPases

M. Antonelli de Lima Gómez; G. Rodríguez de Lores Arnaiz

Dopamine inhibits Mg2+,Na+,K+- and Na+,K+-ATPase activities but does not modify Mg2+-ATPase activity of nerve ending membranes isolated from rat cerebral cortex. In the presence of the soluble fraction of brain, dopamine activates total, Na+,K+-, and Mg2+-ATPases. Dopamine stimulation of nerve ending membrane ATPases is achieved when soluble fractions of brain, kidney, or liver are used. On the other hand, dopamine effects are not observed on kidney or heart ATPase preparations. These results indicate tissue specificity of dopamine effects with respect to the enzyme source; there is no tissue specificity for the requirement of the soluble fraction to achieve stimulation of ATPases by dopamine.


Life Sciences | 1988

The aging of a brain soluble fraction modifies its effect on the activity of neuronal Na+, K+-ATPase

G. Rodríguez de Lores Arnaiz; M.Antonelli de Gómez de Lima

Abstract In previous work we presented evidence showing that a brain soluble fraction was necessary to observe the stimulation of membrane Na + , K + -ATPase activity by catecholamines. Preliminary experiments suggested to us that the soluble fraction by itself was able to modify this enzyme activity. In the present study we have assayed the activity of synaptosomal Na + , K + -ATPase in the presence of a soluble fraction (aqueous supernatant after 100, 000 g 30 min) prepared from rat cerebral cortex. The soluble fraction was used at different times after its preparation and different conditions in the incubation period previous to the enzyme assay were tested. It was observed that the enzyme activity increased 70% in the presence of a “0 min” soluble fraction. This effect was not found: a) in the presence of a “30 min” soluble fraction or b) when the membranes plus a “0 min” soluble fraction were incubated for 30 min (15 min at 37°C + 15 min at O°C) before the ATPase assay. In the presence of a “60 min” or “24 h” soluble fraction Na + , K + -ATPase activity was inhibited 50%. Results obtained indicate that Na + , K + -ATPase activity of synaptosomal membranes can be stimulated, inhibited or unchanged, depending on the aging of the soluble fraction.


Neurochemical Research | 2001

An Endogenous Na+, K+-ATPase Inhibitor Enhances Phosphoinositide Hydrolysis in Neonatal but Not in Adult Rat Brain Cortex

M.A Calviño; Clara Peña; G. Rodríguez de Lores Arnaiz

The effect of an endogenous Na+, K+-ATPase inhibitor, termed endobain E, on phosphoinositide hydrolysis was studied in rat brain cortical prisms and compared with that of ouabain. As already shown for ouabain, a transient effect was obtained with endobain E; maximal accumulation of inositol phosphates induced by endobain E was 604 ± 138% and 186 ± 48% of basal values in neonatal and adult rats, respectively. The concentration-response plot for the interaction between endobain E and phosphoinositide turnover differed from that of ouabain, thus suggesting the involvement of distinct mechanisms. In the presence of endobain E plus ouabain at saturating concentrations, no additive effect was recorded, suggesting that both substances share at least a common step in their activation mechanism of inositol phosphates metabolism or that they enhance phosphatidylinositol 4,5-biphosphate breakdown from the same membrane precursor pool, until its exhaustion. Experiments with benzamil, a potent blocker of Na+/Ca2+ exchanger, showed that it partially and dose-dependently inhibited endobain E effect. These results indicate that the endogenous Na+, K+-ATPase inhibitor endobain E, like ouabain, is able to stimulate phosphoinositide turnover transiently during postnatal brain development.


Developmental Brain Research | 2002

Metabotropic glutamate receptor involvement in phosphoinositide hydrolysis stimulation by an endogenous Na+, K+-ATPase inhibitor and ouabain in neonatal rat brain

M.A Calviño; Clara Peña; G. Rodríguez de Lores Arnaiz

The mechanism of action of an endogenous Na(+), K(+)-ATPase inhibitor, termed endobain E, on phosphoinositide hydrolysis was studied in neonatal rat brain cortex and compared with that of ouabain. Lack of additivity for endobain E and glutamate paired stimulation on inositol phosphates accumulation suggested that they share at least a common step on inositol phosphate metabolism, as previously advanced for ouabain. In addition, Cd(2+) sensitivity of endobain E and ouabain effects strengthened the involvement of glutamate receptors. The participation of ionotropic glutamate receptors on endobain E- and ouabain-induced phosphoinositide hydrolysis seems untenable, since antagonists dizocilpine and CNQX proved unable to inhibit these effects. However, the endobain E effect was blocked by 2 x 10 (-4) M L-AP3 (an antagonist for group I mGluRs) when at least a 15-min preincubation protocol was employed. Maximal inhibition of endobain E effect (42%) occurred when L-AP3 preincubation was extended to 60 min, as already shown with glutamate, but only a trend to decrease was recorded with ouabain. At variance, the ouabain effect was reduced to 50% employing 5 x 10 (-4) M MCPG (a competitive antagonist for group I mGluRs), whereas no blockade was observed with endobain E or glutamate. In addition, MPEP (a selective mGluR5 antagonist) partially reduced ouabain, endobain E and glutamate responses and the selective mGluR1 antagonist LY367385 showed no activity at all. To sum up, the present findings support the involvement of mGluR5 in both endobain E and ouabain phosphoinositide hydrolysis stimulation in neonatal rat brain, in spite of dissimilar response to tested antagonists.

Collaboration


Dive into the G. Rodríguez de Lores Arnaiz's collaboration.

Top Co-Authors

Avatar

Clara Peña

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Analía Reinés

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Elena Girardi

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Herbin

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Lisandro Giraldez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.A Calviño

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge