G. S. Karaoglanidis
Aristotle University of Thessaloniki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. S. Karaoglanidis.
Plant Disease | 2007
C. K. Myresiotis; G. S. Karaoglanidis; K. Tzavella-Klonari
During February 2005, 55 single-spore isolates of Botrytis cinerea were collected at the end of the season from vegetable crops grown in 18 greenhouses on the island of Crete, Greece. They were tested for sensitivity to the anilinopyrimidine fungicides pyrimethanil and cyprodinil, the hydroxyanilide fungicide fenhexamid, the phenylpyrrole fungicide fludioxonil, the dicarboximide fungicide iprodione, and the benzimidazole fungicide carbendazim. Results of the study showed the existence of benzimidazole- and dicarboximide-resistant strains at frequencies of 61.8 and 18%, respectively. Moreover, for first time, the development of resistance to anilinopyrimidine fungicides by B. cinerea was detected in greenhouse vegetable crops on the island of Crete. High resistance frequencies of 49.1 and 57.4% were observed for pyrimethanil and cyprodinil, respectively. In addition, one isolate was found to be resistant to the hydroxyanilide fungicide fenhexamid, while no strains resistant to the phenylpyrrole fungicide were detected. Among the 55 isolates tested, 13 were resistant only to carbendazim, 6 were resistant only to anilinopyrimidines, 3 were resistant to both benzimidazoles and dicarboximides, 17 were resistant to both benzimidazoles and anilinopyrimidines, 6 were resistant to both dicarboximides and anilinopyrimidines, 1 was simultaneously resistant to benzimidazoles, dicarboximides, and anilinopyrimidines, 1 was resistant to both anilinopyrimidines and hydroxyanilides, and 8 were sensitive to all fungicides tested. A strong cross-resistance relationship was found between the two anilinopyrimidine fungicides tested when log transformed EC50 values of the isolates were subjected to a linear regression analysis (r = 0.71). Despite the detection of several phenotypes with simultaneous resistance to chemically unrelated active ingredients, in none of the remaining possible fungicide pairs was there observed any kind of cross-resistance relationship.
Pest Management Science | 2010
G. A. Bardas; Thomas Veloukas; Olga Koutita; G. S. Karaoglanidis
BACKGROUND Botrytis cinerea Pers.: Fr. is a high-risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS Seventy-six single-spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC(50) values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L(-1) respectively, while the resistant isolates showed EC(50) values higher than 50 mg L(-1) for boscalid and from 16 to > 50 mg L(-1) for pyraclostrobin. All QoI-resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit.
Phytopathology | 2008
Hervé F. Avenot; A. Sellam; G. S. Karaoglanidis; Themis J. Michailides
Thirty-eight isolates of Alternaria alternata from pistachio orchards with a history of Pristine (pyraclostrobin + boscalid) applications and displaying high levels of resistance to boscalid fungicide (mean EC(50) values >500 microg/ml) were identified following mycelial growth tests. A cross-resistance study revealed that the same isolates were also resistant to carboxin, a known inhibitor of succinate dehydrogenase (Sdh). To determine the genetic basis of boscalid resistance in A. alternata the entire iron sulphur gene (AaSdhB) was isolated from a fungicide-sensitive isolate. The deduced amino-acid sequence showed high similarity with iron sulphur proteins (Ip) from other organisms. Comparison of AaSdhB full sequences from sensitive and resistant isolates revealed that a highly conserved histidine residue (codon CAC in sensitive isolates) was converted to either tyrosine (codon TAC, type I mutants) or arginine (codon CGC, type II mutants) at position 277. In other fungal species this residue is involved in carboxamide resistance. In this study, 10 and 5 mutants were of type I and type II respectively, while 23 other resistant isolates (type III mutants) had no mutation in the histidine codon. The point mutation detected in type I mutants was used to design a pair of allele-specific polymerase chain reaction (PCR) primers to facilitate rapid detection. A PCR-restriction fragment length polymorphism (RFLP) assay in which amplified gene fragments were digested with AciI was successfully employed for the diagnosis of type II mutants. The relevance of these modifications in A. alternata AaSdhB sequence in conferring boscalid resistance is discussed.
Plant Disease | 2011
Thomas Veloukas; Michaela Leroch; Matthias Hahn; G. S. Karaoglanidis
Botrytis cinerea isolates (n = 122) were collected from strawberry fields located in northern Greece during a 3-year period (2008-10) and tested for their sensitivity to the succinate dehydrogenase inhibitor boscalid. Sensitivity measurements showed three distinct phenotypes consisting of isolates highly sensitive (fungicide concentration causing inhibition of germ tube growth by 50% [EC50 values] of 0.05 to 0.21 μg ml-1), moderately resistant (EC50 values of 1.37 to 7.79 μg ml-1), or highly resistant (EC50 values of >50 μg ml-1) to boscalid. Sequence analysis of the sdhB gene revealed five mutations leading to amino acid substitutions in the SdhB subunit in isolates moderately resistant and highly resistant to boscalid. Three moderately resistant isolates showed a nucleotide change from A to T at codon 230, resulting in an asparagine to isoleucine (N230I) substitution. Several moderately resistant isolates showed a nucleotide change from C to T at codon 272, resulting in a substitution from histidine to arginine (H272R) whereas, in another set of isolates, a nucleotide change from A to G was found at the same codon, leading to a substitution from histidine to tyrosine (H272Y). One highly resistant isolate had a nucleotide change from A to T at codon 272, leading to a substitution from histidine to leucine (H272L), whereas, in three other highly resistant isolates, a double nucleotide change from CC to TT was observed at codon 225, resulting in a substitution from proline to phenylalanine (P225F). To facilitate rapid detection of these mutations associated with resistance to boscalid, a primer-introduced restriction analysis polymerase chain reaction was developed. The method was successfully applied to the moderately and highly resistant subpopulations and showed that the H272R mutation was predominant with relative frequencies of 28.5, 37.5, and 30% during 2008, 2009, and 2010, respectively. In contrast, the H272L mutation was detected at a frequency of 2.5% only in the 2009 population, whereas the P225F mutation was detected at a frequency of 7.5% only in the 2010 population.
Plant Disease | 2013
Thomas Veloukas; Anastasios N. Markoglou; G. S. Karaoglanidis
Succinate dehydrogenase inhibiting (SDHI) fungicides constitute a relatively novel fungicide group used for gray mold control caused mainly by Botrytis cinerea. Shortly after registration, resistance was observed in fungal populations that correlated with several mutations in the succinate dehydrogenase complex (complex II). In the current study, 30 B. cinerea isolates possessing five different mutations at three different codons of SdhB (P225F, N230I, and H272L/R/Y) were characterized for their sensitivities to eight SDHI fungicides. The results show different sensitivities and cross-resistance patterns between structurally different SDHIs. P225F mutants were resistant in vitro to all SDHIs tested. Similarly, isolates possessing the H272L mutation were highly resistant to boscalid but showed low to moderate levels of resistance to other SDHIs. The N230I mutants were moderately resistant to boscalid, fluopyram, and fluxapyroxad and showed low resistance levels to isopyrazam, bixafen, fenfuram, benodanil, and carboxin. The H272R mutants showed moderate levels of resistance to boscalid and low resistance levels to isopyrazam, fenfuram, and carboxin but remained sensitive to fluopyram, bixafen, fluxapyroxad, and benodanil. Similarly, the H272Y showed moderate levels of resistance to boscalid and very low resistance levels to isopyrazam, bixafen, fenfuram, and carboxin but showed increased sensitivity to benodanil and fluopyram. Boscalid provided moderate to high control of H272R/Y and N230I mutants in detached fruit assays but provided little control against the H272L and P225F mutants. In contrast, fluopyram controlled H272R/Y mutants and provided moderate levels of control toward H272L, N230I, and P225F mutants. Our findings suggest that sensitivity to SDHIs may vary greatly, dependent on the point mutation in the sdhb subunit.
Phytopathology | 2008
G. A. Bardas; Charalampos K. Myresiotis; G. S. Karaoglanidis
The fitness of anilinopyrimidine-resistant isolates of Botrytis cinerea compared with that of sensitive isolates, collected from vegetable crops in Greece during 2005, was investigated. Stability of resistance to anilinopyrimidine fungicides was determined after consecutive transfers of the fungal isolates on fungicide-free potato dextrose agar for 16 culture cycles or on fungicide-untreated cucumber seedlings for eight disease cycles. Results showed that after the consecutive transfers of the isolates either in vitro or in vivo sensitivity to cyprodinil was not changed significantly compared to the initial sensitivity in all the isolates tested, suggesting a stable genetically controlled trait. Fitness parameters measured were mycelial growth, spore production in vitro, osmotic sensitivity, virulence, spore production in vivo, percentage of spore germination, and competitive ability of the resistant isolates in four pairs with sensitive isolates both on artificial nutrient medium or on cucumber seedling plants. The measurements of the fitness components in individual isolates showed high variability within both sensitivity groups in all, except virulence, fitness components tested. As a group, resistant isolates showed significantly lower (P < 0.05) mycelial growth and virulence, while they were more osmotically sensitive than the sensitive isolates. In addition the resistant isolates showed higher (P < 0.05) spore production in vivo but there was no difference (P > 0.05) between the two sensitivity groups in spore production in vitro and in the percentage of spore germination. However, the correlation to test if there is any relationship between the values of each fitness component tested and the level of cyprodinil sensitivity of each isolate was for all, except the spore production in vivo, fitness components not significant (P > 0.05). This absence of significant correlation coefficient values suggests that the development of resistance to anilinopyrimidine fungicides did not affect the fitness of the resistant isolates. Competition of the resistant versus sensitive isolates was isolates-dependent, since in two of the isolate pairs the resistance frequency decreased significantly after five culture or disease cycles, while in the remaining two pairs resistance frequency increased significantly after five disease cycles or remained stable for one pair after five culture cycles on artificial nutrient media.
Plant Disease | 2011
G. S. Karaoglanidis; Yong Luo; Themis J. Michailides
Fungicides that act as quinone outside inhibitors (QoIs) constitute a fungicide group extensively used against Alternaria late blight of pistachio caused by Alternaria spp. However, developement of resistance to this fungicide class constitutes an important threat for the succesful control of the disease. This study was conducted to determine whether development of resistance to QoIs is associated with a fitness cost, by measuring several biological and epidemiological parameters and estimating the competitive ability in four QoI-resistant and four QoI-sensitive Alternaria alternata isolates. Fitness parameters measured were mycelial growth and spore production in vitro, disease latent period, aggressiveness, and spore production on detached pistachio leaves. The competitive ability of resistant isolates was assessed in coinoculation experiments with sensitive isolates on detached pistachio leaves, using a real-time polymerase chain reaction assay technique. Fitness parameters between grouped QoI-resistant and QoI-sensitive isolates were not significantly different (P = 0.13, 0.21, 0.31, and 0.27 for sporulation in vitro, mycelial growth, incubation period, and sporulation in vivo, respectively), while resistant isolates, as a group, showed a higher aggressiveness (P = 0.01) compared with the sensitive isolates. The data indicate that the resistant strains did not account for a fitness cost compared with the sensitive ones under the conditions of testing. The outcome of the competition experiments was isolate dependent. In two pairs, the resistance frequencies increased whereas, in the remaining two pairs of isolates, resistance frequency decreased, suggesting that the resistant isolates were competitive similarly to the sensitive isolates.
Pest Management Science | 2012
Thomas Veloukas; G. S. Karaoglanidis
BACKGROUND Succinate dehydrogenase inhibitors (SDHIs) constitute a fungicide class with increasing relevance in crop protection. These fungicides could play a crucial role in successful management of grey mould disease. In the present study the effect of fluopyram, a novel SDHI fungicide, on several developmental stages of Botrytis cinerea was determined in vitro, and the protective and curative activity against the pathogen was determined on strawberry fruit. Furthermore, fungal baseline sensitivity was determined in a set of 192 pathogen isolates. RESULTS Inhibition of germ tube elongation was found to be the most sensitive growth stage affected by fluopyram, while mycelial growth was found to be the least sensitive growth stage. Fluopyram provided excellent protective activity against B. cinerea when applied at 100 µg mL(-1) 96, 48 or 24 h before the artificial inoculation of the strawberry fruit. Similarly, fluopyram showed a high curative activity when it was applied at 100 µg mL(-1) 24 h post-inoculation, but, when applications were conducted 48 or 96 h post-inoculation, disease control efficacy was modest or low. The measurement of baseline sensitivity showed that it was unimodal in all the populations tested. The individual EC(50) values for fluopyram ranged from 0.03 to 0.29 µg mL(-1). In addition, no correlation was found between sensitivity to fluopyram and sensitivity to other fungicides, including cyprodinil, fenhexamid, fludioxonil, iprodione, boscalid and pyraclostrobin. CONCLUSIONS The obtained biological activity, baseline sensitivity and cross-resistance relationship data suggest that fluopyram could play a key role in grey mould management in the near future and encourage its introduction into spray programmes.
Food Chemistry | 2015
Charalampos K. Myresiotis; Stefanos Testempasis; Zisis Vryzas; G. S. Karaoglanidis; Euphemia Papadopoulou-Mourkidou
A rapid and accurate analytical method for the determination of three Alternaria mycotoxins (alternariol, alternariol monomethyl ether, and tentoxin) in pomegranate samples (fruits and juices) was developed and validated. The overall average recoveries ranged for 82.0-109.4% and the relative standard deviations were from 1.2% to 10.9%. The optimized and validated method was applied to detect the presence of the target mycotoxins in real samples (fruits and juices) purchased from Greek markets. Mycotoxins were not found in any of the analyzed samples. Also, artificially inoculated pomegranate fruits with six different Alternaria alternata species complex isolates, known to produce the target mycotoxins on pure cultures, were analyzed and alternariol concentrations found ranged from 0.3 to 50.5 μg/g, alternariol monomethyl ether from 0.5 to 32.3 μg/g, while tentoxin was not detected. The developed analytical method can be used for the routine monitoring of the major Alternaria mycotoxins in pomegranates.
Pest Management Science | 2012
Charalampos K. Myresiotis; G. S. Karaoglanidis; Zisis Vryzas; Euphemia Papadopoulou-Mourkidou
BACKGROUND Plant growth-promoting rhizobacteria (PGPR) can be potential agents for biological control of plant pathogens, while their combined use with conventional pesticides may increase their efficacy and broaden the disease control spectrum. The effect of four different Bacillus sp. PGPR strains (B. subtilis GB03 and FZB24, B. amyloliquefaciens IN937a and B. pumilus SE34) applied individually and in mixtures, as well as in combined use with acibezolar-S-methyl (ASM) and hymexazol, on plant growth promotion and on the control of Fusarium crown and root rot (FCRR) of tomato was evaluated. RESULTS All PGPR strains promoted the tested plant growth characteristics significantly. A higher promoting effect was provided by SE34. Experiments on population dynamics of PGPR strains revealed that, after 28 days of incubation, populations of strain SE34 remained stable, while the remaining bacterial strains showed a slight decline in their population densities. The GB03 and FZB24 strains provided a higher disease suppression when applied individually. However, application of IN937a in a mixture with GB03 provided a higher control efficacy of Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Treatment of tomato plants with ASM resulted in a small reduction in disease index, while application of hymexazol provided significantly higher control efficacy. Combined applications of the four PGPR strains with either ASM or hymexazol were significantly more effective. CONCLUSION The results of the study indicate that, when bacilli PGPR strains were combined with pesticides, there was an increased suppression of Forl on tomato plants, and thus they may prove to be important components in FCRR integrated management.